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Overview
• A brief history of SEM
• Regression
• Maximum likelihood estimation
• Models

– Twin data
– Sib pair linkage analysis 
– Association analysis

• Mixture distributions
• Some extensions



Origins of SEM

• Regression analysis
– ‘Reversion’ Galton 1877: Biological 

phenomenon
– Yule 1897 Pearson 1903: General Statistical 

Context
– Initially Gaussian X and Y; Fisher 1922 Y|X

• Path Analysis
– Sewall Wright 1918; 1921
– Path Diagrams of regression and covariance 

relationships



Structural Equation Model basics
• Two kinds of relationships 

– Linear regression X -> Y    single-headed
– Unspecified covariance X<->Y   double-headed

• Four kinds of variable
– Squares – observed variables
– Circles – latent, not observed variables

– Triangles – constant (zero variance) for specifying means
– Diamonds -- observed variables used as moderators (on paths)



Linear Regression Model

YX

Var(X) Res(Y)

b

Models covariances only
Of historical interest



Linear Regression Model

Y
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Mu(y*)Mu(x)

Models Means and Covariances



Linear Regression Model
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Models Mean and Covariance of Y only
Must have raw (individual level) data
X is a definition variable
Mean of Y different for every observation
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Single Factor Model
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Factor Model with Means
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Factor model essentials

• The factor itself is typically assumed to be normally 
distributed: SEM

• May have more than one latent factor
• The error variance is typically assumed to be normal 

as well
• May be applied to binary or ordinal data

– Threshold model



Multifactorial Threshold Model
Normal distribution of liability.  
‘Affected’ when liability x > t
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Measuring Variation

• Distribution
– Population
– Sample
– Observed measures

• Probability density function ‘pdf’
– Smoothed out histogram
– f(x) >= 0 for all x



One Coin toss
2 outcomes
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Two Coin toss
3 outcomes
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Four Coin toss
5 outcomes
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Ten Coin toss
9 outcomes
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Fort Knox Toss
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Variance

Measure of Spread

Easily calculated

Individual differences



Average squared deviation
Normal distribution
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Measuring Variation

• Absolute differences?

• Squared differences?

• Absolute cubed?

• Squared squared?

Weighs & Means



Measuring Variation

• Squared differences  

Ways & Means

Fisher (1922) Squared has minimum variance under 
normal distribution

Concept of “Efficiency” emerges



Deviations in two dimensions
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Deviations in two dimensions
µx

µy

+
dx

dy



Covariance

• Measure of association between two variables

• Closely related to variance

• Useful to partition variance
• Analysis of variance coined by Fisher



Summary
Formulae for sample statistics; i=1…N observations

µx = (Σxi)/N

σx = Σ (xi - µx ) / (N)2 2

r =   σxy xy

22

xxσ σ

σxy = Σ (xi-µx )(yi-µy ) / (N)



Variance covariance matrix

Univariate Twin/Sib Data

Var(Twin1)       Cov(Twin1,Twin2)   

Cov(Twin2,Twin1)       Var(Twin2) 

Only suitable for complete data
Good conceptual perspective



Summary

• Means and covariances

• Basic input statistics for “Traditional SEM”

• Notion of probability density function



Maximum Likelihood Estimates: Nice Properties

1.  Asymptotically unbiased
• Large sample estimate of p -> population value

2.  Minimum variance “Efficient”
• Smallest variance of all estimates with property 1

3. Functionally invariant
• If g(a) is one-to-one function of parameter a
• and MLE (a) = a*
• then MLE g(a) = g(a*)

• See http://wikipedia.org



Likelihood computation
Calculate height of curve

-1



Height of normal curve: µx = 0
Probability density function
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φ(xi) is the likelihood of data point xi for 
particular mean & variance estimates



Height of normal curve at xi: µx = .5
Function of mean
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Likelihood of data point xi increases as µx
approaches xi



Height of normal curve at x1
Function of variance
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Height of normal curve at x1 and x2
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x1 has higher likelihood with var=1 whereas 
x2 has higher likelihood with var=2
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Likelihood of xi as a function of µ
Likelihood function
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Likelihood as a measure of “outlierness”
• Unlikely observation may be an outlier

– Genuine
– Data entry error
– Model-specific

• Can use Mx feature to obtain case-wise likelihoods
– Raw data
– Option mx%p= uni_pi.out
– Output for each case: the contribution to the -2ll as well as z-score 

statistic and Mahalanobis distance, weight and weighted likelihood
– Generates R syntax to read in file, and sort by z-score
– Beeby Medland & Martin (2006) ViewPoint and ViewDist: utilities for 

rapid graphing of linkage distributions and identification of outliers. 
Behav Genet. 2006 Jan;36(1):7-11



Height of bivariate normal density function
An unlikely pair of (x,y) values
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Height of bivariate normal density function
A more likely pair of (x,y) values
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Likelihood of Independent Observations

• Chance of getting two heads
• L(x1…xn) = Product (L(x1),  L(x2) , … L(xn))
• L(xi) typically < 1

• Avoid vanishing L(x1…xn) 
• Computationally convenient log-likelihood
• ln (a * b) = ln(a) + ln(b)

• Minimization more manageable than maximization
– Minimize -2 ln(L)



Likelihood Ratio Tests

• Comparison of likelihoods
• Consider ratio L(data,model 1) / L(data, model 2)
• Ln(a/b) = ln(a) - ln(b)
• Log-likelihood lnL(data, model 1) - ln L(data, model 2)

• Useful asymptotic feature when model 2 is a submodel of model 1
-2 (lnL(data, model 1) - lnL(data, model 2)) ~ χ2 

df = # parameters of model 1 - # parameters of model 2

• BEWARE of gotchas!
– Estimates of a2 q2 etc. have implicit bound of zero
– Distributed as 50:50 mixture of 0 and χ1

2 
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Exercises: Compute Normal PDF

• Get used to Mx script language

• Use matrix algebra

• Taste of likelihood theory



Mx script part 1: Declare groups and 
matrices

#NGroups 1

Title figure out likelihood by hand
Calculation
Begin Matrices;
E symm 2 2 ! Expected Covariance Matrix
H full 1 1 ! One half
T full 1 1 ! Two
M full 2 1 ! Mean vector 
P full 1 1 ! Pi
X full 2 1 ! Observed Data
End Matrices;



Mx script part 2: Put values in matrices

Matrix E
1 .0 1
Matrix H .5
Matrix M 0 0
Matrix P 3.141592
Matrix T 2
Matrix X 1 2



Mx script part 3: Matrix Algebra

Begin Algebra;
O=T*P*\sqrt\det(E); ! Fractional part, 2pi*sqrt(det(e))
Q=(X-M)'&(E~); ! Mahalanobis Distance
R=\exp(-H*Q); ! e to the power -.5*Mahalanobis distance
S=-T*\ln(R%O);! minus twice log-likelihood

Z=-T*\ln(\pdfnor(X'_M'_E));  ! A simpler way
End Algebra;

End Group;



Exercises 1

• Bivariate normal distribution
– Means [110.28   112.00]
– Covariance matrix [299.40

174.20   281.18]
• Compute likelihood of observed vector x = [87 89]



Exercises 2

• Bivariate normal distribution
– Means [1 1]
– Covariance matrix [1 .3

.3 1 ]
• Compute likelihood of observed vector x = [1 2]
• Compute likelihood with correlation of .0 instead
• Optional compute likelihood of observed vector x = [-2 -2] with 

correlations .5, .0, and 0 
• Which is the most likely combination of model and data?



Exercises 3

• Univariate normal distribution
– Mean [1]
– Variance [1 ]

• Compute likelihood of observed vector x = [1]
• Compute likelihood of observed vector x = [2]
• Compute their product
• Which bivariate case does this equal?



Two Group Model: ACE
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DZ by IBD status
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Extensions to More Complex Applications

• Endophenotypes

• Linkage Analysis

• Association Analysis



Basic Linkage (QTL) Model

Q: QTL Additive Genetic          F: Family Environment          E: Random Environment
3 estimated parameters: q, f and e       Every sibship may have different model

π = p(IBD=2) + .5 p(IBD=1)
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Measurement Linkage (QTL) Model

Q: QTL Additive Genetic          F: Family Environment          E: Random Environment
3 estimated parameters: q, f and e       Every sibship may have different model

π = p(IBD=2) + .5 p(IBD=1)∧
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Fulker Association Model

Multilevel model 
for the means
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Measurement Fulker Association Model (SM)
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Multivariate Linkage & Association Analyses

• Computationally burdensome
• Distribution of test statistics questionable
• Permutation testing possible

– Even heavier burden
– Sarah Medland’s rapid approach

• Potential to refine both assessment and genetic models
• Lots of long & wide datasets on the way

– Dense repeated measures: EMA; fMRI(!)
– Need to improve software!  Open source Mx


