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Overview

A brief history of SEM
Regression

Maximum likelihood estimation
Models

— Twin data

— Sib palir linkage analysis
— Association analysis
Mixture distributions

Some extensions




Origins of SEM

e Regression analysis

— ‘Reversion’ Galton 1877: Biological
phenomenon

— Yule 1897 Pearson 1903: General Statistical
Context

— Initially Gaussian X and Y; Fisher 1922 Y|X

e Path Analysis
— Sewall Wright 1918; 1921

— Path Diagrams of regression and covariance
relationships
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Structural Equation Model basics

 Two kinds of relationships

— Linear regression X ->Y  single-headed
— Unspecified covariance X<->Y double-headed

Four kinds of variable
— Squares — observed variables

— Circles - latent, not observed variables

— Triangles — constant (zero variance) for specifying means

— Diamonds -- observed variables used as moderators (on paths)
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Linear Regression Model
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Models covariances only
Of historical interest




Linear Regression Model
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Models Means and Covariances




Linear Regression Model
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Models Mean and Covariance of Y only
Must have raw (individual level) data

X Is a definition variable

Mean of Y different for every observation




Single Factor Model




Factor Model with Means




Factor model essentials

The factor itself is typically assumed to be normally
distributed: SEM

May have more than one latent factor

The error variance is typically assumed to be normal
as well

May be applied to binary or ordinal data
— Threshold model




Multifactorral Threshold Model

Normal distribution of liability.

“Affected”’ when liability T T
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Measuring Variation

* Distribution
— Population
— Sample
— Observed measures
* Probability density function ‘pdf’
— Smoothed out histogram
(x) >=0 forall x
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04 Probability

Four Coin toss

0.3

0.2

0.1

0 L _

HHHH  HHHT  HHTT

Qutcome

HTTT

TTTT

VCU




9 outcomes

Probability

Ten Coin toss
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Fort Knox Toss

Infinite outcomes

-1 0
Heads-Talls

De Moivre 1733 Gauss 1827




Variance

= Measure of Spread
= Easily calculated

= |ndividual differences




Average squared deviation

Normal distribution

Variance = X d:*/N




Measuring Variation
Weighs & Means

Absolute differences?
Squared differences?

Absolute cubed?

Squared squared?




Measuring Variation
Ways & Means

=3 « Squared differences

Fisher (1922) Squared has minimum variance under
normal distribution

Concept of “Efficiency” emerges
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Deviations In two dimensions




Deviations in two dimensions
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Covarlance

* Measure of association between two variables
* Closely related to variance

 Useful to partition variance
* Analysis of variance coined by Fisher




Summary

Formulae for sample statistics; i=1...N observations

U, = (le)/N
= 2 (x - p) /(N)

= 2 (%= )(Yi-my) 1 (N)




Variance covariance matrix

Univariate Twin/Sib Data

Var(Twinl) Cov(Twinl, Twin2)

Cov(Twin2,Twinl) Var(Twin2)

Only suitable for complete data
Good conceptual perspective




Summary

« Means and covariances
« Basic input statistics for “Traditional SEM”

* Notion of probability density function




Maximum Likelihood Estimates: Nice Properties

1. Asymptotically unbiased

o Large sample estimate of p -> population value
2. Minimum variance “Efficient”

 Smallest variance of all estimates with property 1
3. Functionally invariant

* |f g(a) is one-to-one function of parameter a

e and MLE (a) = a*

* then MLE g(a) = g(a*)




Likelihood computation
Calculate height of curve
Univariate - height of normal pdf

¢ (X) =
(21'[02) -5 am 5 ((x - u) “2)/0%2)

Multivariate - height of multinormal pdf

‘21—12 ‘_n/2 e‘-5((xi } U)E_l(xi - 1))
-J




Height of normal curve:
Probability density function

¢(x;) Is the likelihood of data point x; for
particular mean & variance estimates VCU




Height of normal curve at x;:

Function of mean

o(x) N

X

Likelihood of data point x; Increases as
approaches x \V/= §




Height of normal curve at x,

Function of variance

[

/S

X1

Likelihood of data point x; changes as
variance of distribution changes VCU




Height of normal curve at x, and X,

X, has higher likelihood with var=1 whereas
X, has higher likelihood with var=2 VCU




Likelihood of x; as a function of
Likelihood function

L(X))

X

L(X;) Is the likelihood of data point x; for
particular mean & variance estimates \VCU




Likelihood as a measure of “outlierness”

 Unlikely observation may be an outlier
— Genuine
— Data entry error
— Model-specific
« Can use Mx feature to obtain case-wise likelihoods

— Raw data

— Option mx%p= uni_pi.out

— Qutput for each case: the contribution to the -2l as well as z-score
statistic and Mahalanobis distance, weight and weighted likelihood

— Generates R syntax to read in file, and sort by z-score

— Beeby Medland & Martin (2006) ViewPoint and ViewDist: utilities for

rapid graphing of linkage distributions and identification of outliers.
Behav Genet. 2006 Jan;36(1):7-11 VCU




Height of bivariate normal density function

An unlikely pair of (x,y) values




Height of bivariate normal density function

A more likely pair of (x,y) values




Likelihood of Independent Observations

Chance of getting two heads

L(x,...X,) = Product (L(x,), L(X,), ... L(X.))
L(x;) typically <1

Avoid vanishing L(X;...X.)
Computationally convenient log-likelihood
In (a*b) =In(a) + In(b)

Minimization more manageable than maximization
— Minimize -2 In(L)
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Likelihood Ratio Tests

Comparison of likelihoods 7
Consider ratio L(data,model 1) / L(data, model 2) F

Ln(a/b) =In(a) - In(b) s 2 10 1 23
Log-likelihood InL(data, model 1) - In L(data, model 2)

Useful asymptotic feature when model 2 is a submodel of model 1
-2 (InL(data, model 1) - InL(data, model 2)) ~ »?
df = # parameters of model 1 - # parameters of model 2

BEWARE of gotchas!
— Estimates of a2 ¢? etc. have implicit bound of zero
— Distributed as 50:50 mixture of 0 and 2
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Exercises: Compute Normal PDF

« Get used to Mx script language
 Use matrix algebra

o Taste of likelihood theory




Mx script part 1: Declare groups and
matrices

#NGroups 1

Title figure out likelihood by hand
Calculation

Begin Matrices;

E symm 2 2 | Expected Covariance Matrix
H full 1 1! One half

Tfull11!Two

M full 2 1 ! Mean vector

Pfull11!Pi

X full 2 1! Observed Data

End Matrices;




Mx script part 2: Put values in matrices

Matrix E

1.01

Matrix H .5

Matrix M 0 0O
Matrix P 3.141592
Matrix T 2

Matrix X 1 2




Mx script part 3: Matrix Algebra

Begin Algebra;

O=T*P*\sqgrt\det(E); ! Fractional part, 2pi*sqrt(det(e))
Q=(X-M)'&(E~); ! Mahalanobis Distance

R=\exp(-H*Q); ! e to the power -.5*Mahalanobis distance
S=-T"\In(R%0O);! minus twice log-likelihood

Z=-T*\In(\pdfnor(X'_M'_E)); ! A simpler way
End Algebra;

End Group;




Exercises 1

« Bivariate normal distribution
— Means [110.28 112.00]

— Covariance matrix [299.40
174.20 281.18]

« Compute likelihood of observed vector x = [87 89]




Exercises 2

Bivariate normal distribution
— Means [1 1]
— Covariance matrix [1 .3
31]
Compute likelihood of observed vector x = [1 2]
Compute likelihood with correlation of .0 instead

Optional compute likelihood of observed vector x = [-2 -2] with
correlations .5, .0, and 0

Which is the most likely combination of model and data?
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Exercises 3

Univariate normal distribution

— Mean [1]

— Variance [1 ]
Compute likelihood of observed vector x = [1]
Compute likelihood of observed vector x = [2]
Compute their product
Which bivariate case does this equal?




Two Group Model: ACE

MZ twins DZ twins

[ parameters
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DZ by IBD status




Extensions to More Complex Applications

« Endophenotypes

o Linkage Analysis

 Association Analysis




Basic Linkage (QTL) Model
7= p(IBD=2) + .5 p(IBD=1)

Q: QTL Additive Genetic F: Family Environment E: Random Environment
3 estimated parameters: g, fand e Every sibship may have different model VCU




Measurement Llnkage (QTL) Model .

Q: QTL Additive Genetic F: Family Environment E: Random Environment
3 estimated parameters: g, fand e Every sibship may have different model vcu




Fulker Association Model
< Genot_> A <o >

Multilevel model

for the means




Measurement Fulker Association Model (SM)




Multivariate Linkage & Association Analyses

Computationally burdensome

Distribution of test statistics questionable

Permutation testing possible

— Even heavier burden

— Sarah Medland’s rapid approach

Potential to refine both assessment and genetic models
Lots of long & wide datasets on the way

— Dense repeated measures: EMA; fMRI(!)

— Need to improve software! Open source Mx
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