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What do we test

• Raise your hand if:
– You have analyzed more than 1 phenotype on a 

dataset
– Used more than one analytic technique on a dataset 

(e.g. single marker association and haplotype 
association)

– Picked your best result from the bunch



Genome-wide association

High throughput genotyping
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Other multiple testing considerations

• Genome-wide association is really bad
– At 1 test per SNP for 500,000 SNPs
– 25,000 expected to be significant at p<0.05, by 

chance alone
• To make things worse

– Dominance (additive/dominant/recessive)
– Epistasis (multiple combinations of SNPs)
– Multiple phenotype definitions
– Subgroup analyses
– Multiple analytic methods



Bonferroni correction
• For testing 500,000 SNPs

– 5,000 expected to be significant at p<0.01
– 500 expected to be significant at p<0.001
– ……
– 0.05 expected to be significant at p<0.0000001

• Suggests setting significance level to α = 10-7*

• Bonferroni correction for m tests
– set significance level for p-values to α = 0.05 / m
– (or adjust the p-values to m × p, before applying the usual α = 

0.05 significance level)

• *See Risch and Merikangas 1999



Implication for sample size

6.8153.4241.8210-10500 × 106

4.8538.0528.3710-7500 × 103

2.8522.3915.1410-4500

17.853.840.051

RatioNCP
(80% power)

χ2αm

Large but not “impossible” increase in sample size 

Genetic Power Calculator



Technical objection

Conservative when tests are non-independent
Nyholt (2004)

Spectral decomposition of correlation matrix
Effective number of independent tests
May be conservative: Salyakina et al (2005)

False Discovery
Permutation procedure



Philosophical objection
“Bonferroni adjustments are, at best, unnecessary and, at 

worst, deleterious to sound statistical inference”
Perneger (1998)

• Counter-intuitive: interpretation of finding depends on the 
number of other tests performed

• The general null hypothesis (that all the null hypotheses 
are true) is rarely of interest 

• High probability of type 2 errors, i.e. of not rejecting the 
general null hypothesis when important effects exist



A Bayesian perspective
For each significant test, we can consider the probability that 

H0 is in fact true (i.e. false positive probability)

Prob (H0 True | H0 Rejected)

Using Bayes’ rule
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A Bayesian perspective

Re-expressing the equation in term of α:
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that follows the null 
distribution
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Implications
• Justification of traditional choice α=0.05

– False positive rate ~ α, when π0 ~ ½ and 1-β→1

• Maintenance of low false positive rate requires α to be 
set proportional to
– 1-β (power)
– (1-π0)/π0 (proportion of tests that follow the null)

• Multiple testing usually reflects lack of strong hypotheses 
and therefore associated with high π0
– Bonferroni adjustment effectively sets α ∝ 1/m, which is 

equivalent to assuming π0 = m/(m+1). But is this reasonable?



Fixed significance level

• Use fixed value of π0 based on a 
guesstimate of the proportion of SNPs in 
the genome that have an effect, e.g. 1-π0 = 
25/107 = 2.5 × 10-6

• Power = 0.8
• False positive rate = 0.05
• Then α ~ 10-7 (regardless of m)



Adaptive significance level
• Use the availability of multiple tests to our advantage, 

because the empirical distribution of p-values can inform 
us about the suitable significance level

• Suppose that out of 500,000 SNPs, 100 are observed to 
be significant at α=0.00001. Since the expected number 
of significant SNPs occurring by chance is 5, the false 
positive rate given by setting α=0.00001 is 5/100

• Therefore a desired false positive rate can be obtained 
by setting α appropriately, according to the observed 
distribution of p-values (False Discovery Rate method)



Hodgepodge anyone?

• Multiple testing
– Where it comes from
– Why is it a problem

• False discovery
– Theory & practice

• Permutation
– Theory & practice

• Additional handy techniques



Benjamini-Hochberg 
FDR method

Benjamini & Hochberg (1995) Procedure:

1. Set FDR (e.g. to 0.05)
2. Rank the tests in ascending order of p-value, giving p1 ≤

p2 ≤ … ≤ pr ≤ … ≤ pm
3. Then find the test with the highest rank, r, for which the 

p-value, pr, is less than or equal to (r/m) × FDR
4. Declare the tests of rank 1, 2, …, r as significant

A minor modification is to replace m by mπ0



B & H FDR method

0.045.9019
0.050.95310

0.040.7818
0.035.6417
0.030.4506
0.025.3965
0.020.2054

0.015.1653
1.010.0092
1.005.0081

Reject H0 ?(Rank/m)×FDRP-valueRank
FDR=0.05



Practical example
• Excel worksheet, fdr.xls in \\faculty\ben
• Download to your directory
• 850 tests, with P-values
• FDR procedure in Excel
• Play around with changing the FDR level to see 

the behaviour of accepting/rejecting
• To determine which tests are accepted:

– Start at the bottom (lowest rank) 
– Work up the list to find the 1st accept 
– That 1st accept and all tests above are accepted



Modified FDR methods

Storey 2002 procedure:
Under the null P-values look like:
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Modified FDR methods

Storey 2002 procedure:
Combined distribution of P-values look like:

Distribution of P-values under combined distributions
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Storey 2002 procedure:
Combined distribution of P-values look like:
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Modified FDR methods

Storey 2002 procedure:
Combined distribution of P-values look like:

Distribution of P-values under combined distributions
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The number of tests above p 
= .5 is 47651out of 100000

So the proportion of tests that 
follows the null: 47651/50000 
or .95302 = π0

So we replace the number of 
tests with the number of tests 
times π0 or 95302.



“Parametric FDR” methods
Mixture model: some test statistics follow the null 

distribution, while others follow a specified alternative 
distribution

Special cases: 
Central and non-central chi-square distributions (Everitt & Bullmore, 
1999)
Central and non-central normal distributions (Cox & Wong, 2004)
Uniform and beta distributions (Allison et al, 2002)

From fitted model, calculates the posterior probability of 
each test belonging to the null distribution (i.e. of being a 
false discovery if declared significant)



Pitfalls of the FDR method
• Assumption: p-values are distributed as U[0,1] under 

H0
– If untrue (e.g. biased genotyping, population substructure) then

this could lead to an excess of small p-values and hence 
misleading FDR results

• Requires a large number of tests to work
• The accuracy of the FDR is not easy to determine
• Requires a distribution (detectable number) of tests 

under the alternative



Who came up with permutation?

• Hint: it’s a statistical tool
• R. A. Fisher
• Proposed as validation for Student’s t-test 
in 1935 in Fisher’s The Design of 
Experiments
• Originally included all possible 
permutations of the data



Basic Principle

1. Under the null, all data comes from the same 
distribution

2. We calculate our statistic, such as mean 
difference

3. We then shuffle the data with respect to group  
and recalculate the statistic (mean difference)

4. Repeat step 3 multiple times
5. Find out where our statistic lies in comparison 

to the null distribution



Real Example

• Case-Control data, and we want to find out if 
there is a mean difference

18

17

16

15

14
13
12
11

10

0.52144-0.01979Mean
0.682461.28129

0.246393-1.221958

-0.44421-0.147987

0.985237-1.375996

0.8719941.2728725
0.7460450.7157224
-0.478860.0930073
0.612679-0.302282

1.471227-0.492741

controlcase

Mean difference .541 



Permutation One

8
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11

0.0862950.415354Mean
-1.221950.74604513
-0.478861.47122710
1.272872-0.147987
-0.30228-0.492741
-1.37599-0.4442116
0.7157220.98523715
0.8719940.24639317
0.682460.0930073

0.6126791.28129
controlcase

Mean difference = .329

Note how the different labels have been swapped for the permutation



Permutation One
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0.0862950.415354Mean
-1.221950.74604513
-0.478861.47122710
1.272872-0.147987
-0.30228-0.492741
-1.37599-0.4442116
0.7157220.98523715
0.8719940.24639317
0.682460.0930073

0.6126791.28129
controlcase

Mean difference = .329

Note how the different labels have been swapped for the permutation

Repeat many 
many many
many times (and 
then repeat many 
more times)



Simulation example

• I simulated 70 data points from a single 
distribution—35 cases and 35 controls

• Mean difference of -.21
• I then permuted randomly assigning case 

or control status
• Empirical significance= 

(#hits+1)/(#permutations+1)



Distribution of mean differences 
from permutations

Frequency

0
100
200
300
400
500
600
700
800

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Frequency

-.21



Distribution of mean differences 
from permutations

Frequency

0
100
200
300
400
500
600
700
800

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Frequency

-.21 .21



Empirical Significance

• #hits is any permuted dataset that had a 
mean difference >.21 or <-.21

• #permutations is the trials permuted 
datasets we generate

• Result(#hits + 1/#permutations + 1) = 
2025/5001 = .4049

• T test results = .3672



General advantages

• Does not rely on distributional 
assumptions

• Corrects for hidden selection
• Corrects for hidden correlation



General principles of permutation

• Disrupt the relationship being tested
– Mean difference between group: switch 

groups
– Test for linkage in siblings: randomly reassign 

the ibd sharing
– If matched control then within pair permute



Practical example for permutation

• Permutation routine:
– Case Control analysis

• Use R for permutation
• Many genetic programs have in-built 

permutation routines



R permutation

• R has an in-built simulate P-value function 
for chi square

• We’ll start with that and progress to 
manual permutation to understand the 
process

• In \\workshop\faculty\ben
– Copy both rscript.R, casecontrol.txt, and 

chiextract



File descriptions

• rprog.R
– Contains the script that generates the R 

simulated P and the manual simulations
• casecontrol.txt

– Contains the data for the true chi square



Running the script
• Save all files to your directory in a convenient 

folder
• Fire up R
• Change the working directory in R to where the 

script and data are
– To do this click on file menu then change working 

directory to either browse or type in the directory 
name

• In R type or follow the dialogues 
source(“rscripR”)

• That runs the script and some output will be 
generated and reported back from R



Picture of the menu

CHANGE DIR…

This is the menu item 
you must change to 
change where you 
saved your rscript and 
casecontrol.txt

Note you must have the 
R console highlighted



Picture of the dialog box

Either type the path 
name or browse to 
where you saved 
the R script



Running the R script

SOURCE R CODE…

This is where we 
load the R program 
that simulates data



Screenshot of source code 
selection

This is the file 
rprog.R for the 
source code



How would we do QTL permutation 
in Mx?

1. We analyze our real data and record χ2

2. For sibpairs we shuffle the ibd
probabilities for each sibpair

3. We reanalyze the data and record the 
new χ2

4. We generate a distribution of χ2 for the 
permuted sets

5. Place our statistic on the distribution
6. Repeat for all locations in genome



Some caveats

• Computational time can be a challenge
• Determining what to maintain and what to 

permute
• Variable pedigrees also pose some 

difficulties
• Need sufficient data for combinations
• Unnecessary when no bias, but no cost to 

doing it
• Moderators and interactions can be tricky


