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To save you from embarrassment
To help you understand and analyse human genetic data 
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Data conventions

AA = A

BB = B

AB = H

Missing data = -
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Data conventions

ID M1 M2 M3
A01231 A A A
A07612 B - H
A01812 H H A

ID Phenotype Covariate
A01231 10 F
A07612 - F
A01812 8 M

Genotype file

Phenotype file

Map file



Map file
Use the latest mouse build and convert physical to genetic 

distance: 1 Mb = 1.6 cM
Use our genetic map: http://gscan.well.ox.ac.uk/



Analysis
If you can’t see the effect it probably isn’t there
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Red = Hom

Blue = Het

Backcross genotypes



Statistical analysis



Linear models
Also known as

ANOVA
ANCOVA
regression

multiple regression
linear regression
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Hypothesis testing
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Hypothesis testing

H0:    y ~ 1 

H1:    y ~ 1 + x εµ ++= axy

εµ +=y

H1 vs H0 : Does x explain a significant amount of the variation?

likelihood
ratio

Chi Square
test

p-value logP

SS explained /
SS unexplained

F-test
(or t-test)

linear
models

only

LOD score



Hypothesis testing

H0:    y ~ 1 + x 

H1:    y ~ 1 + x + x2

εµ ++= axy

εµ +++= DA dxaxy

H1 vs H0 : Does  x2 explain a significant extra amount of the 
variation?



H0:    phenotype ~ 1

H1:    phenotype ~ a

Test:
H1 vs H0
H2 vs H1
H2 vs H0

PRACTICAL: hypothesis test for identifying 
QTLs

H2:    phenotype ~ a + d

To start:
1. Copy the folder faculty\valdar\AnimalModelsPractical to your own directory.
2. Start R
3. File -> Change Dir… and change directory to your AnimalModelsPractical
directory
4. Open Firefox, then File -> Open File, and open  “f2cross_and_thresholds.R”
in the AnimalModelsPractical directory



PRACTICAL: Chromosome scan of F2 cross



Two problems in QTL analysis

Missing genotype problem
Model selection problem



Missing genotype problem

M1 M2 M3 Q M4 M5
H A A - A A
H H H - A A
B B - - H H



Solutions to the missing genotype problem

Maximum likelihood interval mapping 
Haley-Knott regression
Multiple imputation



Interval mapping
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Interval mapping
qq genotype 10

qQ genotype 20



Interval mapping
( ) 2
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Interval mapping

Which is the true situation?

( ) 2
1Pr =qq

( ) 2
1Pr =qQ

qq genotype 10

qQ genotype 20

ε+=10y

ε+= 20y

qq

qQ

0.5

0.5

“mixture” model

Fit both situations and then weight them

Fit the “average” situation
(which is technically false, but quicker)

ε+=15y

ML interval mapping

Haley-Knott regression



Imputation



Imputation



Key references
Maximum likelihood methods

Linear regression

Imputation



r/qtl
http://www.rqtl.org/
Broman, Sen & Churchill



Is interval mapping necessary?



QTL

logP score



QTL



QTL

logP score



Significance Thresholds



Significance Thresholds

 Suggestive Significant
Mapping 
method P LOD P  LOD 
Backcross 3.40E-03 1.9 1.00E-04 3.3
Intercross (2 df) 1.60E-03 2.8 5.20E-05 4.3

 
  

Lander, E. Kruglyak, L. Genetic dissection of complex traits: guidelines 
for interpreting and reporting linkage results Nature Genetics. 11, 241-
7, 1995



Thresholds
Permutation test
SUBJECT.NAME Sex Phenotype m1 m2 m3 m4       

F2$798   F -0.738004 -1  1  1 -1         
F2$364   F  0.413330  0  0  0  0
F2$367   F  1.417480 -1  1  1 -1
F2$287   F  0.811208  1 -1 -1 1
F2$205   M  1.198270  0  0  0  0



Thresholds
Permutation test
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F2$798   F -0.738004 -1  1  1 -1         
F2$364   F  0.413330  0  0  0  0
F2$367   F  1.417480 -1  1  1 -1
F2$287   F  0.811208  1 -1 -1 1
F2$205   M  1.198270  0  0  0  0

SUBJECT.NAME Sex Phenotype m1 m2 m3 m4
F2$798   F  0.413330 -1  1  1 -1
F2$364   F  1.417480  0  0  0  0
F2$367   F  1.198270 -1  1  1 -1
F2$287   F -0.738004  1 -1 -1 1
F2$205   M  0.811208  0  0  0  0

shuffle



Permutation tests to establish thresholds

Empirical threshold values for quantitative trait mapping
GA Churchill and RW Doerge

Genetics, 138, 963-971 1994

An empirical method is described, based on the concept of a 
permutation test, for estimating threshold values that are tailored to 
the experimental data at hand. 



PRACTICAL: significance thresholds by 
permutation



Two problems in QTL analysis

Missing genotype problem
Model selection problem



The model problem
How QTL genotypes combine to produce the phenotype



The model problem
Linked QTL corrupt the position estimates
Unlinked QTL decreases the power of QTL detection



Composite interval mapping

ZB Zeng Precision mapping of quantitative trait loci
Genetics, Vol 136, 1457-1468, 1994

http://statgen.ncsu.edu/qtlcart/cartographer.html



Composite interval mapping

M1 M2

M1 M2QQ Q



Composite interval mapping

M-1 M1 M2 M3

M-1 M1 M2 M3QQ Q



Model selection
Inclusion of covariates: gender, environment and other things 

too many too enumerate here



Inclusion of covariates

H0:    phenotype ~ covariates

H1:    phenotype ~ covariates + LocusX



Inclusion of covariates

H0:    phenotype ~ covariates

H1:    phenotype ~ covariates + LocusX

H1 vs H0 : how much extra does LocusX explain?



Inclusion of covariates

H0:    phenotype ~ covariates

H1:    phenotype ~ covariates + LocusX

H0:    startle ~ Sex + BodyWeight + TestChamber + Age

H1:    startle ~ Sex + BodyWeight + TestChamber + Age + Locus432

H1 vs H0 : how much extra does LocusX explain?



PRACTICAL: Inclusion of gender 
effects in a genome scan

To start:
In Firefox, then File -> Open File, and open  “gxe.R”



Experimental crosses
Inbred strain crosses
Recombinant inbreds
Alternatives



Recombinant Inbreds
F0 Parental 
Generation

F1 Generation

F2 Generation

Interbreeding for 
approximately 20 
generations to produce 
recombinant inbreds



RI strain genotypes

http://www.well.ox.ac.uk/mouse/INBREDS

SNP SELECTOR

http://gscan.well.ox.ac.uk/gs/strains.cgi





RI strain phenotypes



RI analysis



Power of RIs

Effect size of a QTL that can be detected 
with RI strain sets, at P= 0.00013

Number Power QTL %Varexp

24 90 55
50 45

37 90 30
50 35



Experimental crosses
Inbred strain crosses
Recombinant inbreds
Alternatives



Why do we need alternatives? 
Classical strategies don’t find genes because of poor 

resolution
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One locus may contain many QTL



New approaches
Chromosome substitution strains



New approaches
Chromosome substitution strains

Collaborative cross



New approaches
Chromosome substitution strains

Collaborative cross

In silico mapping



Resources

R http://www.r-project.org/
R help http://news.gmane.org/gmane.comp.lang.r.general
R/qtl http://www.rqtl.org
Composite interval mapping (QTL Cartographer)

http://statgen.ncsu.edu/qtlcart/index.php
Markers          http://www.well.ox.ac.uk/mouse/inbreds

Gscan (HAPPY and associated analyses) http://gscan.well.ox.ac.uk

General reading
Lynch & Walsh (1998) Genetics and analysis of quantitative traits (Sinauer).
Dalgaard (2002) Introductory statistics with R (Springer-Verlag).



END SECTION





New approaches
Advanced intercross lines
Genetically heterogeneous stocks



F2 Intercross

x

Avg. Distance Between
Recombinations

F1

F2F2 intercross
~30 cM



Advanced intercross lines (AILs) 

F0

F1

F2

F3

F4

Darvasi A, Soller M (1995) Advanced intercross lines, an experimental population for 
fine genetic mapping. Genetics 141: 1199-1207. 



Chromosome scan for F12

position along whole chromosome (Mb)

goodness of fit
(logP)

0 100cM

significance threshold

QTL

Typical
chromosome





PRACTICAL: AILs



Genetically Heterogeneous Mice



F2 Intercross

x

Avg. Distance Between
Recombinations

F1

F2F2 intercross
~30 cM



Pseudo-random mating
for 50 generations

Heterogeneous Stock F2 Intercross

x

Avg. Distance Between
Recombinations:

F1

F2HS
~2 cM

F2 intercross
~30 cM



Pseudo-random mating
for 50 generations

Heterogeneous Stock F2 Intercross

x

Avg. Distance Between
Recombinations:

F1

F2HS
~2 cM

F2 intercross
~30 cM



Genome scans with single marker association



High resolution mapping
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Relation Between Marker and Genetic Effect

Observable 
effect

QTL Marker 1



Relation Between Marker and Genetic Effect

Observable 
effect

QTLMarker 2 Marker 1



Relation Between Marker and Genetic Effect

No effect 

observable
Observable 

effect

QTLMarker 2 Marker 1



Hidden Chromosome Structure

Observed chromosome structure

Multipoint method (HAPPY) calculates the 
probability that an allele descends from a founder 

using multiple markers
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Haplotype reconstruction using HAPPY

m183 m184 m185

allele allele allele

A typical chromosome from an HS mouse
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Haplotype reconstruction using HAPPY

m183 m184 m185

allele allele allele

A typical chromosome from an HS mouse

actual path

another plausible path



Haplotype reconstruction using HAPPY

marker interval

m183 m184 m185

allele allele allele

A typical chromosome from an HS mouse
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0
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average over all paths



Haplotype reconstruction using HAPPY

chromosome

genotypes

haplotype
proportions
predicted by
HAPPY



HAPPY model for additive effects

Strain f (strain)
LP.J 0.04

DBA.2J 0.05
CBA.J 0.03

C57BL.6J 0.07
C3H.HeJ 0.36
BALB.cJ 0.07
AKR.J 0.03

A.J 0.36



HAPPY model for additive effects

( ) ( )∑
=

+=
8

1s
sfsy ετ

Phenotype y is modeled asStrain f (strain)
LP.J 0.04

DBA.2J 0.05
CBA.J 0.03

C57BL.6J 0.07
C3H.HeJ 0.36
BALB.cJ 0.07
AKR.J 0.03

A.J 0.36 ( )sτ is effect of strain s



HAPPY effects models

( ) ( )∑
=

+=
8

1s
sfsy ετ

( ) ( )∑∑
=∈

+++=
8

1covariates sj
j sfsy εταµ

Additive model

Additive model with covariate effects

( ) ( )∑∑ +++=
∈ tsj

j tsftsy
,covariates

,, εταµ

Full (ie, additive & dominance) model with covariate effects



Genome scans with HAPPY



Many peaks

mean red cell volume



Ghost peaks



family effects, cage effects, odd breeding

…complex pattern of linkage disequilibrium





How to select peaks: a simulated 
example



How to select peaks: a simulated 
example

Simulate 7 x  5% QTLs

(ie, 35% genetic effect)

+ 20% shared 
environment effect

+ 45% noise

= 100% variance



Simulated example: 1D scan



Peaks from 1D scan

phenotype ~ covariates + ?



1D scan: condition on 1 peak

phenotype ~ covariates + peak 1 +  ?



1D scan: condition on 2 peaks

phenotype ~ covariates + peak 1 + peak 2 + ?



1D scan: condition on 3 peaks

phenotype ~ covariates + peak 1 + peak 2 + peak 3 + ?



1D scan: condition on 4 peaks

phenotype ~ covariates + peak 1 + peak 2 + peak 3 +
peak 4 + ?



1D scan: condition on 5 peaks

phenotype ~ covariates + peak 1 + peak 2 + peak 3 + 
peak 4 + peak 5 + ?



1D scan: condition on 6 peaks

phenotype ~ covariates + peak 1 + peak 2 + peak 3 + 
peak 4 + peak 5 + peak 6 + ?



1D scan: condition on 7 peaks

phenotype ~ covariates + peak 1 + peak 2 + peak 3 + 
peak 4 + peak 5 + peak 6 + peak 7 + ?



1D scan: condition on 8 peaks

phenotype ~ covariates + peak 1 + peak 2 + peak 3 + 
peak 4 + peak 5 + peak 6 + peak 7 + peak 8 + ?



1D scan: condition on 9 peaks

phenotype ~ covariates + peak 1 + peak 2 + peak 3 + 
peak 4 + peak 5 + peak 6 + peak 7 + peak 8 + peak 9 
+ ?



1D scan: condition on 10 peaks

phenotype ~ covariates + peak 1 + peak 2 + peak 3 + 
peak 4 + peak 5 + peak 6 + peak 7 + peak 8 + peak 9 
+ peak 10 + ?



1D scan: condition on 11 peaks

phenotype ~ covariates + peak 1 + peak 2 + peak 3 + 
peak 4 + peak 5 + peak 6 + peak 7 + peak 8 + peak 9 
+ peak 10 + peak 11 + ?



Peaks chosen by forward selection



Bootstrap sampling
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Bootstrap sampling
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Forward selection on a bootstrap sample



Forward selection on a bootstrap sample



Forward selection on a bootstrap sample



Bootstrap evidence mounts up…



In 1000 bootstraps…

Bootstrap Posterior Probability
(BPP)



Model averaging by bootstrap 
aggregation

Choosing only one model:
very data-dependent, arbitrary
can’t get all the true QTLs in one model

Bootstrap aggregation averages over models
true QTLs get included more often than false ones

References:
Broman & Speed (2002)
Hackett et al (2001)



PRACTICAL: http://gscan.well.ox.ac.uk



ADDITIONAL SLIDES FROM HERE



An individual’s phenotype follows a mixture 
of normal distributions



m

Maternal chromosome
Paternal chromosome
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Markers
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Markers
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Markers

m
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Markers

m

0.5 cM 1 cM



Markers

m
0.5 cM 1 cM



Analysis

Probabilistic Ancestral Haplotype Reconstruction 
(descent mapping): implemented in HAPPY
http://www.well.ox.ac.uk/~rmott/happy.html
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