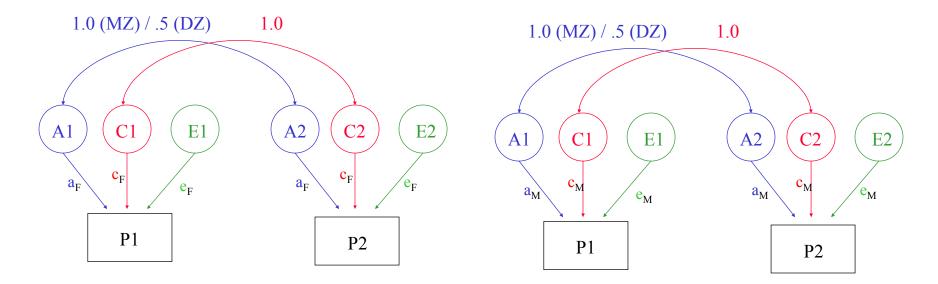
Heterogeneity

Danielle Dick, Hermine Maes, Sarah Medland, Danielle Posthuma, et al!

Boulder Twin Workshop March 2008

Heterogeneity Questions I

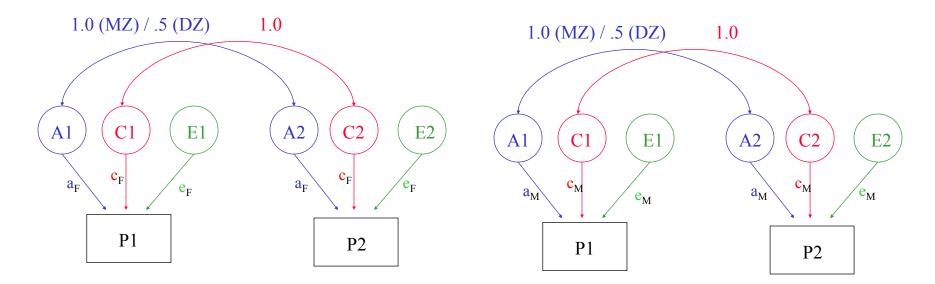
- Univariate Analysis: What are the contributions of additive genetic, dominance/shared environmental and unique environmental factors to the variance?
- Are the contributions of genetic and environmental factors equal for different groups, such as sex, race, ethnicity, SES, environmental exposure, etc.?


Ways to Model Heterogeneity in Twin Data

- Multiple Group Models
 - Sex Effects
 - Young/Old cohorts
 - Urban/Rural residency

Sex Effects

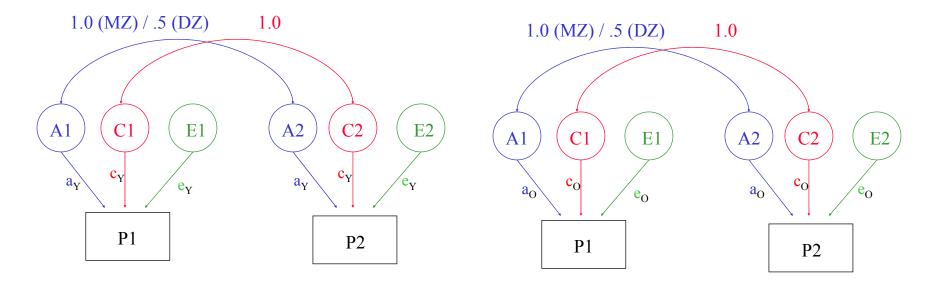
Females


Males

Sex Effects

Females

Males



 $a_F = a_M ?$ $c_F = c_M ?$ $e_F = e_M ?$

Age Effects

Young

 $a_{Y} = a_{O}?$ $c_{Y} = c_{O}?$ $e_{Y} = e_{O}?$

Exercise I: modifying the script to test for age heterogeneity

- Open **bmi_young.mx** (in \\workshop\dd\)
- This script: young males, 4 groups:
- 1 = calculation group matrix declarations
- 2 = MZ data
- 3 = DZ data
- 4 = calculation group standardized solution
- ADE model, 1 grand mean, so 4 estimated parameters

Exercise I: modifying the script to test for age heterogeneity

- Change this script so it will allow you to estimate ADE in the young and the older cohort by adding four groups for the older cohort
- Then run it
- If done correctly you should get -2ll = 3756.552 and df = 1759

Required modifications for Exercise I

- Copy and paste all 4 groups
- Change Select if agecat=2 in the two new data groups
- Change **matrices** = **group 5** in the two new data groups
- Change **#ngroups** = **8**

Exercise II: Testing AE model – Significant Differences b/w Young & Old?

- In bmi_young2.mx, D has been fixed (it was not significant), so an AE model is estimated
- Check the estimates of A and E in the young and old cohort under the AE model

	Α	E
Young - unstandardized		
Young standardized		
Old – unstandardized		
Old - standardized		

	А	E
Young - unstandardized	0.5413	0.1414
Young standardized	0.7924	0.2076
Old – unstandardized	0.4330	0.1815
Old - standardized	0.7046	0.2954

Unstandardized versus standardized effects

	GROUP 1		GROUP 2	
	Unstandardized Variance	Standardized Variance	Unstandardized Variance	Standardized Variance
Genetic	60	0.60	60	0.30
Common environmental	35	0.35	70	0.35
Unique environmental	5	0.05	70	0.05
Total variance	100		200	

Exercise II: Equality of variance components across age cohorts

Add the option multiples with EQUATE command, use a **get** in between and test whether

•
$$a_{young} = a_{old}$$
 ?

•
$$e_{young} = e_{old}$$
 ?

Exercise II: Fit results

a_{young} = a_{old}?
EQ X 1 1 1 X 5 1 1
end

Chi-squared 4.093 d.f. 1 Probability 0.043

get AE_cohort.mxs

Chi-squared 3.954 d.f. 1 Probability 0.047

	А	E
Young - unstandardized	0.5413	0.1414
Young standardized	0.7924	0.2076
Old – unstandardized	0.4330	0.1815
Old - standardized	0.7046	0.2954

Testing Standardized estimates

• Note: As the standardized parameters are <u>calculated</u> we cannot change them in an option multiple, and cannot use the EQ statement. Instead we need to use a constraint group:

Title G9: Constraint Constraint Begin Matrices ; S comp 1 4 =S4 ; T comp 1 4 =S8 ; End matrices ; Constraint S=T; Option sat=3760.030, 1761 Option df = -3 End

Problem:

- Many variables of interest do not fall into groups
 - Age
 - Socioeconomic status
 - Regional alcohol sales
 - Parental warmth
 - Parental monitoring
 - Grouping these variables into high/low categories may lose information

'Definition variables' in Mx

- <u>General definition</u>: Definition variables are variables that may vary per subject and that are not dependent variables
- <u>In Mx</u>: The specific value of the def var for a specific individual is read into a matrix in Mx when analyzing the data of that particular individual

'Definition variables' in Mx

create dynamic var/cov structure

- <u>Common uses</u>:
- 1. As covariates/effects on the means (e.g. age and sex)
- 2. To model changes in variance components as function of some variable (e.g., age, SES, etc)

Definition variables used as covariates

General model with age and sex as covariates: $y_i = \alpha + \beta_1(age_i) + \beta_2(sex_i) + \varepsilon$

Where y_i is the observed score of individual *i*, α is the intercept or grand mean, β_1 is the regression weight of age, **age**_i is the age of individual *i*, β_2 is the deviation of males (if sex is coded 0= female; 1=male), **sex**_i is the sex of individual *i*, and ε is the residual that is not explained by the covariates (and can be decomposed further into ACE etc).

Standard model

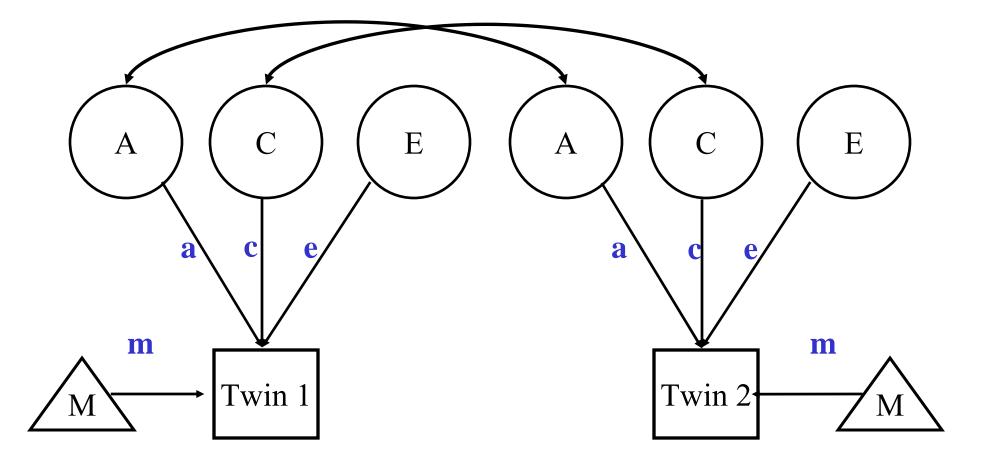
• Means vector

$$\begin{pmatrix} m & m \end{pmatrix}$$

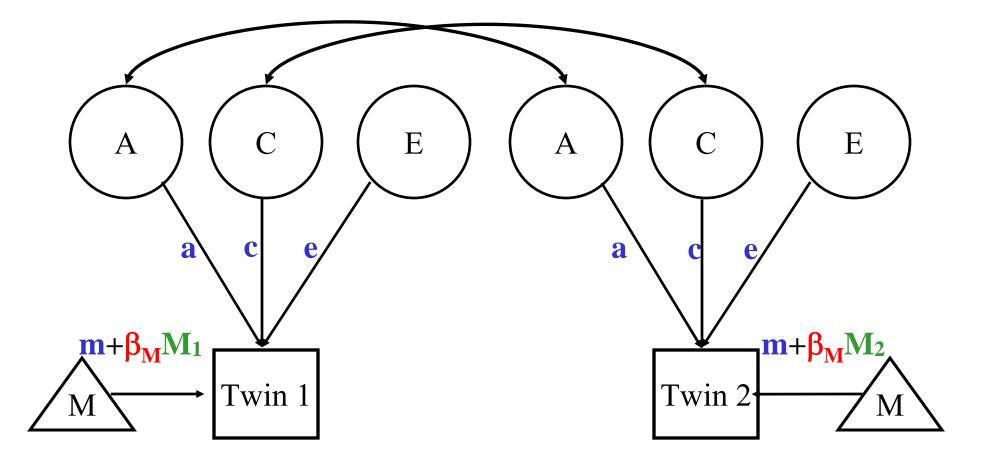
• Covariance matrix

$$\begin{pmatrix} a^{2} + c^{2} + e^{2} \\ Za^{2} + c^{2} & a^{2} + c^{2} + e^{2} \end{pmatrix}$$

Allowing for a main effect of *X*


• Means vector

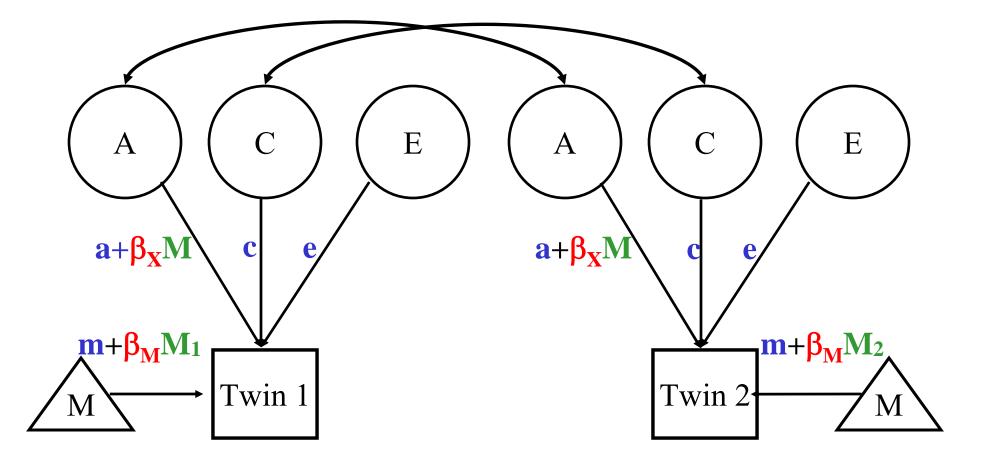
$$\begin{pmatrix} m + \beta X_{1i} & m + \beta X_{2i} \end{pmatrix}$$


• Covariance matrix

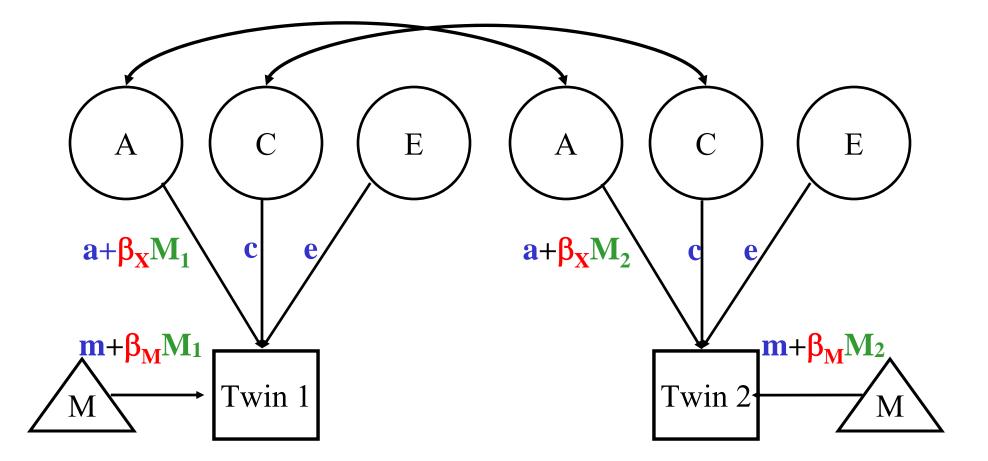
$$\begin{pmatrix} a^{2} + c^{2} + e^{2} \\ Za^{2} + c^{2} & a^{2} + c^{2} + e^{2} \end{pmatrix}$$

Model-fitting approach to GxE

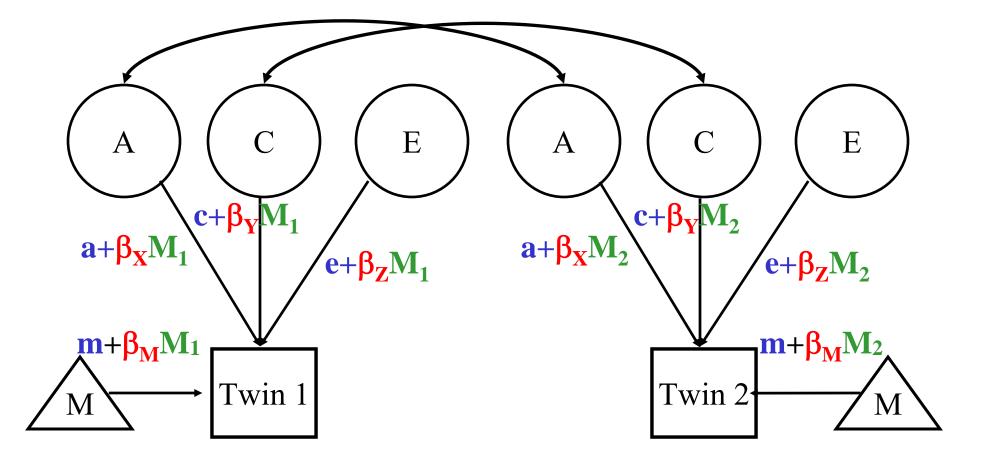
Adding Covariates to Means Model

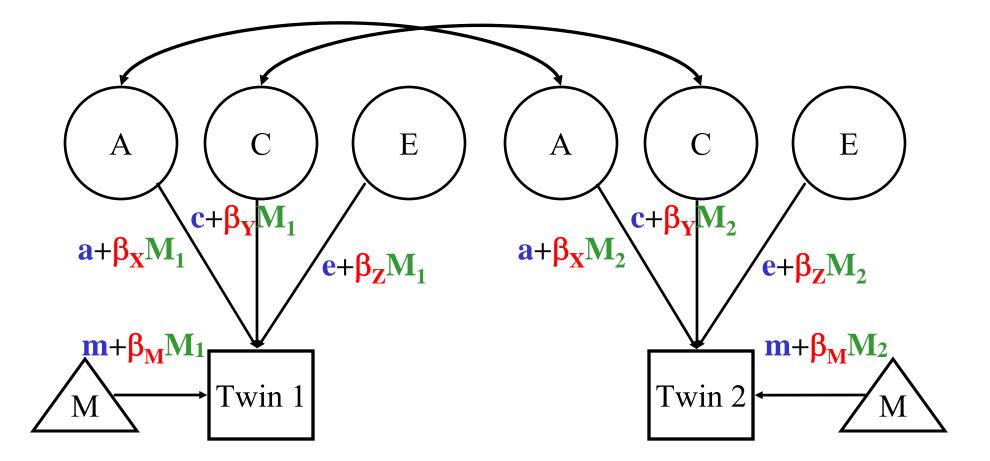


'Definition variables' in Mx

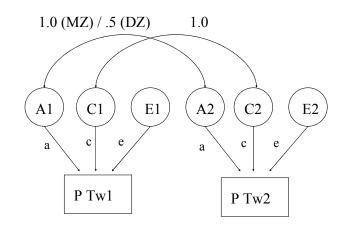

create dynamic var/cov structure

- <u>Common uses</u>:
- 1. As covariates/effects on the means (e.g. age and sex)
- 2. To model changes in variance components as function of some variable (e.g., age, SES, etc)

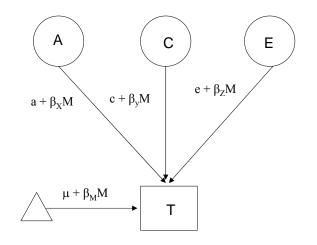

Model-fitting approach to GxE


Individual specific moderators

E x E interactions



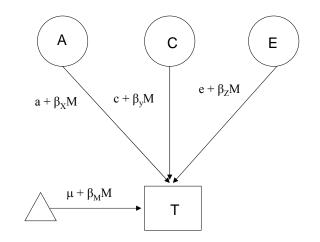
ACE - XYZ - M



Main effects and moderating effects

• Classic Twin Model: Var (P) = $a^2 + c^2 + e^2$

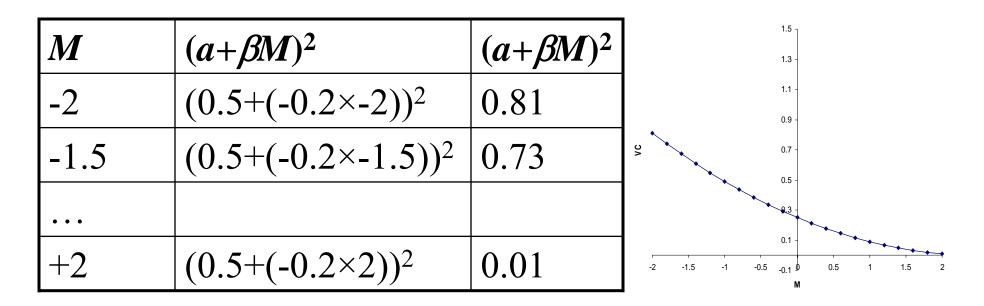
• Moderation Model: Var (P) = $(a + \beta_X M)^2 + (c + \beta_Y M)^2 + (e + \beta_Z M)^2$

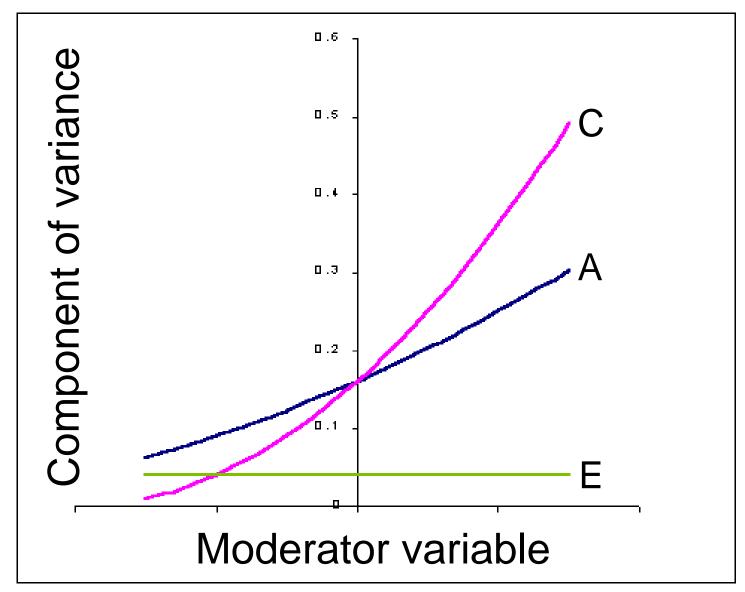

Purcell 2002, Twin Research

Var (T) = $(a + \beta_X M)^2 + (c + \beta_Y M)^2 (e + \beta_Z M)^2$

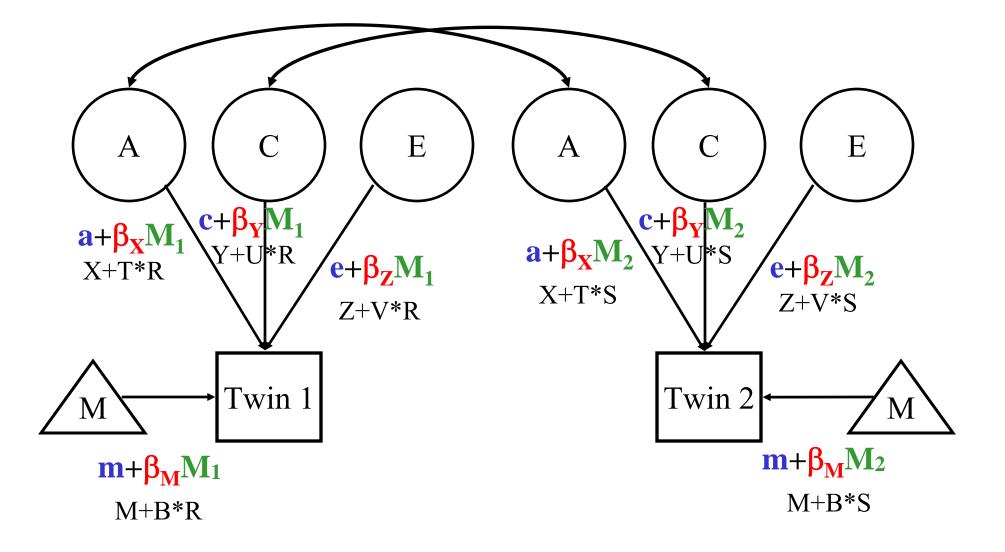
Where *M* is the value of the moderator and

Significance of β_X indicates genetic moderation Significance of β_Y indicates common environmental moderation Significance of β_Z indicates unique environmental moderation


 B_M indicates a main effect of the moderator on the mean


Plotting VCs as Function of Moderator

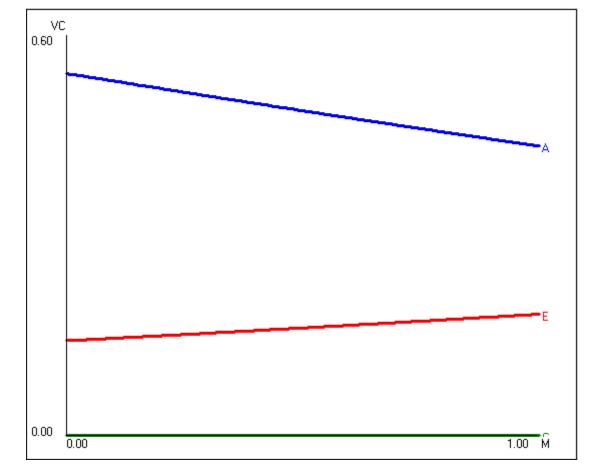
- For the additive genetic VC, for example
 - Given a, β (estimated in Mx model) and a range of values for the moderator variable
- For example,


a = 0.5, $\beta = -0.2$ and *M* ranges from -2 to +2

Model-fitting approach to GxE

Matrix Letters as Specified in Mx Script

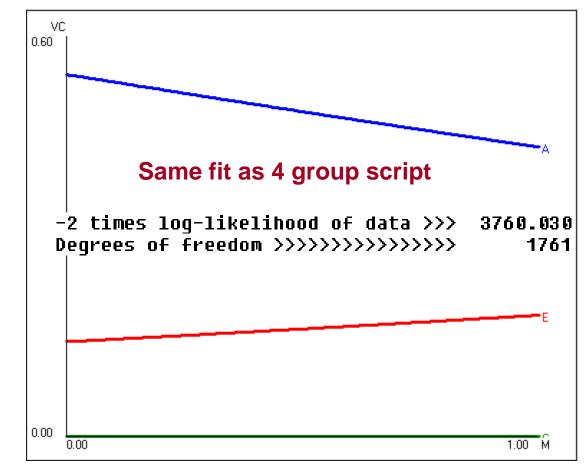

```
! GxE - Basic model
G1: Define Matrices
Data Calc NGroups=3
Begin Matrices;
X full 1 1 free
Y full 1 1 free
Z full 1 1 free
T full 1 1 free
                       ! moderator-linked A component
U full 1 1 free
                       ! moderator-linked C component
V full 1 1 free
                       ! moderator-linked E component
M full 1 1 free
                       ! grand mean
                       ! moderator-linked means model
B full 1 1 free
H full 1 1
R full 1 1
               ! twin 1 moderator (definition variable)
S full 1 1
               ! twin 2 moderator (definition variable)
End Matrices;
Ма Т О
Ma U O
Ma V O
Ma M O
Ma B O
Ma X 1
Ma Y 1
Ma 7 1
Matrix H .5
Options NO_Output
End
```


```
G2: MZ
Data NInput vars=6 NObservations=0
Missing =-999
RE File=f1.dat
Labels id zyg p1 p2 m1 m2
Select if zyg = 1 /
Select p1 p2 m1 m2 /
Definition m1 m2 /
Matrices = Group 1
Means M + B*R \mid M + B*S /
Covariance
(X+T*R)*(X+T*R) + (Y+U*R)*(Y+U*R) + (Z+V*R)*(Z+V*R)
(X+T*R)*(X+T*S) + (Y+U*R)*(Y+U*S)
(X+T*S)*(X+T*R) + (Y+U*S)*(Y+U*S)
(X+T*S)*(X+T*S) + (Y+U*S)*(Y+U*S) + (Z+V*S)*(Z+V*S) /
!twin 1 moderator variable
Specify R -1
!twin 2 moderator variable
Specify S -2
Options NO Output
End
```

```
G2: DZ
Data NInput vars=6 NObservations=0
Missing =-999
RE File=f1.dat
Labels id zyg p1 p2 m1 m2
Select if zyq = 1 /
Select p1 p2 m1 m2 /
Definition m1 m2 /
Matrices = Group 1
Means M + B*R \mid M + B*S /
Covariance
  (X+T*R)*(X+T*R) + (Y+U*R)*(Y+U*R) + (Z+V*R)*(Z+V*R)
H@(X+T*R)*(X+T*S) + (Y+U*R)*(Y+U*S)
H@(X+T*S)*(X+T*R) + (Y+U*S)*(Y+U*S)
  (X+T*S)*(X+T*S) + (Y+U*S)*(Y+U*S) + (Z+V*S)*(Z+V*S) /
!twin 1 moderator variable
Specify R -1
!twin 2 moderator variable
Specify S -2
Options NO Output
End
```

Practical

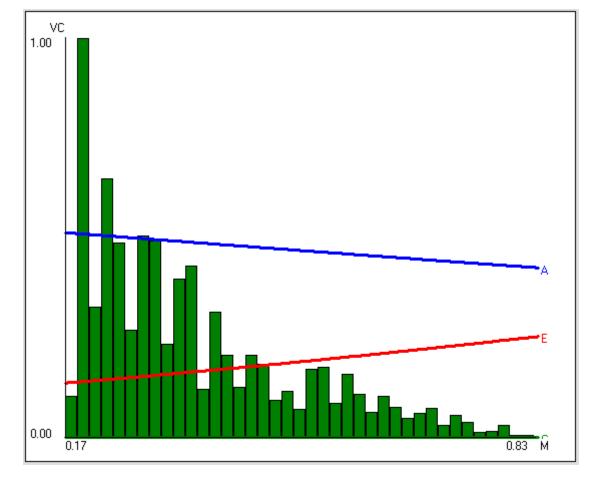
- Cohort (young/old) model using definition variables (coded 0/1)
- Extension to continuous age


Cohort Moderation

Younger Cohort

Older Cohort

Cohort Moderation


Younger Cohort

Older Cohort

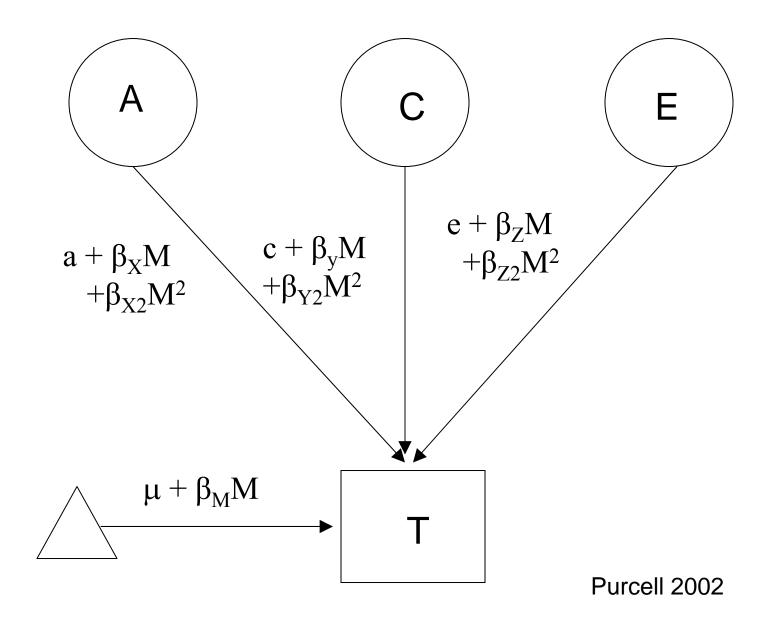
Your task

- Add tests to age_mod.mx to test
 - the significant of age moderation on A
 - the significant of age moderation on E
 - the significant of age moderation on both A and E jointly

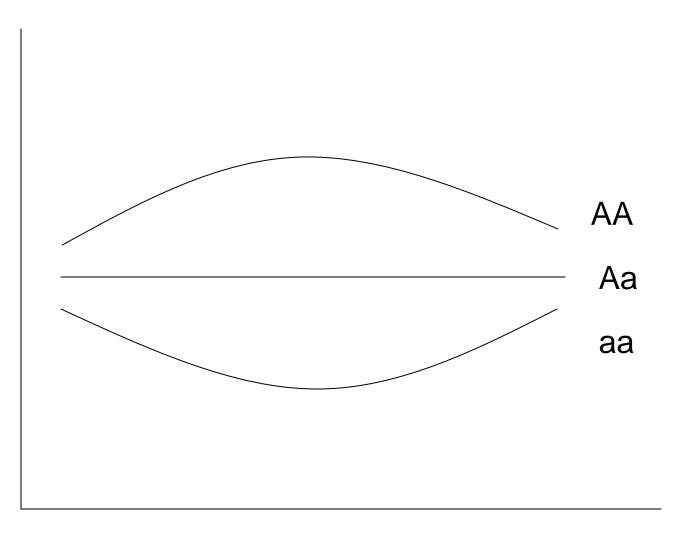
Age Moderation

17 years old

83 years old


Comparing Results

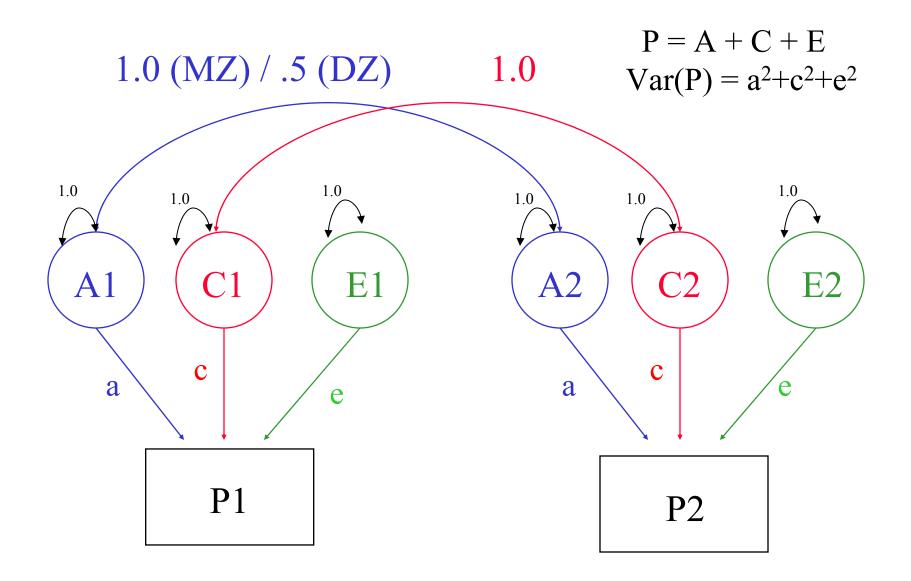
Model	-2LL	df	chi-sq	p
4 group cohort	3760.030	1761		
Cohort mod.	3760.030	1761		
Age mod.	3764.448	1761		
Drop A mod.	3764.873	1762	0.426	0.514
Drop E. mod.	3768.636	1762	4.189	0.041
No mod.	3768.680	1763	4.232	0.120


Why is the A moderation NS using the continuous moderator?

- Artefact was the GxE due to the arbitrary cut-point?
- Confound is there a second modifier involved?
- Non-linear would we expect the effect of age on BMI in adults to be linear?

Nonlinear Moderation can be modeled with the addition of a quadratic term

Nonlinear Moderation


Moderator

This moderation model can be used to test for gene-environment interaction

Gene-Environment Interaction

- Genetic control of sensitivity to the environment
- Environmental control of gene expression
- <u>Bottom line</u>: nature of genetic effects differs among environments

Standard Univariate Model

Contributions of Genetic, Shared Environment, Genotype x Environment Interaction Effects to Twin/Sib Resemblance

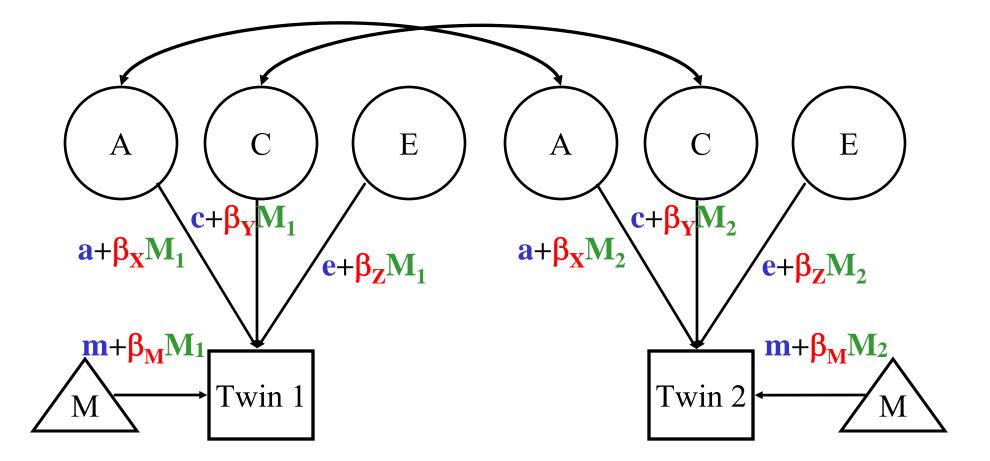
	Shared Environment	Additive Genetic Effects	Genotype x Shared Environment Interaction
MZ Pairs	1	1	$1 \ge 1 = 1$
DZ Pairs/Full Sibs	1	1/2	$1 x \frac{1}{2} = \frac{1}{2}$

Contributions of Genetic, Shared Environment, Genotype x Environment Interaction Effects to Twin/Sib Resemblance

	Shared Environment	Additive Genetic Effects	Genotype x Shared Environment Interaction
MZ Pairs	1	1	$1 \ge 1 = 1$
DZ Pairs/Full Sibs	1	1/2	$1 \times \frac{1}{2} = \frac{1}{2}$

In other words—if gene-(shared) environment interaction is not explicitly modeled, it will be subsumed into the A term in the classic twin model.

Contributions of Genetic, Unshared Environment, Genotype x Unshared Environment Interaction Effects to Twin/Sib Resemblance


	Unshared (Unique) Environment	Additive Genetic Effects	Genotype x Unshared Environment Interaction
MZ Pairs	0	1	$0 \ge 1 = 0$
DZ Pairs/Full Sibs	0	1/2	$0 \ge \frac{1}{2} = 0$

Contributions of Genetic, Unshared Environment, Genotype x Unshared Environment Interaction Effects to Twin/Sib Resemblance

	Unshared (Unique) Environment	Additive Genetic Effects	Genotype x Unshared Environment Interaction
MZ Pairs	0	1	$0 \ge 1 = 0$
DZ Pairs/Full Sibs	0	$\frac{1}{2}$	$0 \ge \frac{1}{2} = 0$

If gene-(unshared) environment interaction is not explicitly modeled, it will be subsumed into the E term in the classic twin model.

ACE - XYZ - M

Main effects and moderating effects

Final Things to Consider

• Don't forget about theory!

Final Things to Consider

- Don't forget about theory!
 - "Moderation in all things....including moderation" -Mike Neale

http://pngu.mgh.harvard.edu/%7Epurcell/gxe/

Heterogeneity Questions II

- Are these differences due to differences in the magnitude of the effects (quantitative)?
 - e.g. Is the contribution of genetic/environmental factors greater/smaller in males than in females?
- Are the differences due to differences in the nature of the effects (qualitative)?
 - e.g. Are there different genetic/environmental factors influencing the trait in males and females?
 - Need OS pairs for this!