Biometrical genetics

Manuel AR Ferreira

Massachusetts General Hospital Harvard Medical School Boston

- Revisit common genetic parameters such as allele frequencies, genetic effects, dominance, variance components, etc
- Use these parameters to construct a biometric genetic model

Model that expresses the:

(1) <u>Mean</u>

(2) Variance

(3) Covariance between individuals

for a quantitative phenotype as a function of the genetic parameters of a given locus.

See how the biometric model provides a useful framework for linkage and association methods.

Outline

- 1. Genetic concepts
- 2. Very basic statistical concepts
- 3. Biometrical model
- 4. Introduction to linkage analysis

1. Genetic concepts

> A. DNA level

DNA structure, organization recombination

B. Population level

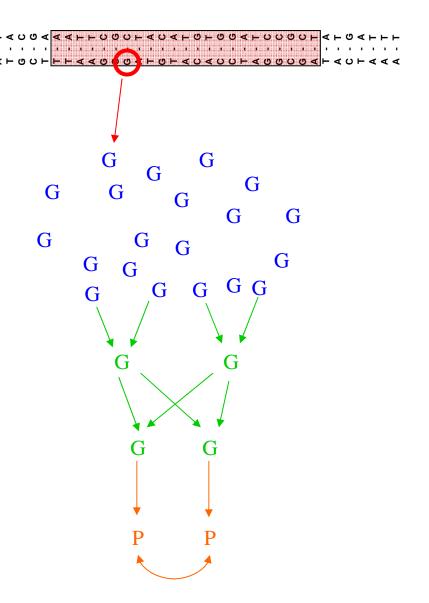
Allele and genotype frequencies

▷ C. Transmission level

Mendelian segregation Genetic relatedness

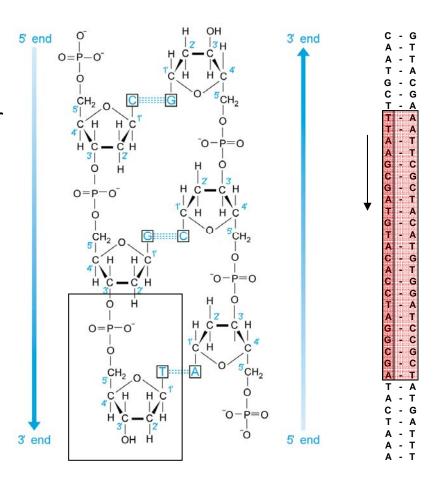
D. Phenotype level

Biometrical model
Additive and dominance components



A. DNA level

- A DNA molecule is a linear backbone of alternating sugar residues and phosphate groups
- Attached to carbon atom 1' of each sugar is a nitrogenous base: A, C, G or T
- Two DNA molecules are held together in anti-parallel fashion by hydrogen bonds between bases [Watson-Crick rules] <u>Antiparallel double helix</u>
- A gene is a segment of DNA which is transcribed to give a protein or RNA product
- Only one strand is read during gene transcription
- Nucleotide: 1 phosphate group + 1 sugar + 1 base

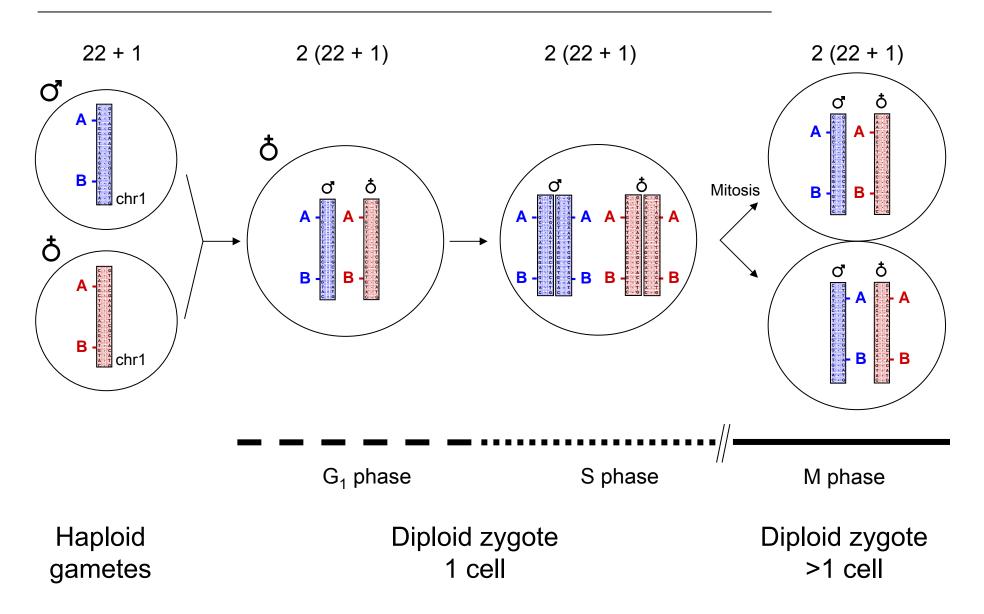


DNA polymorphisms

- Microsatellites
 >100,000
 Many alleles, eg. (CA)_n repeats, very informative, even, easily automated
- SNPs
 11,883,685 (build 128, 03 Mar '08)
 Most with 2 alleles (up to 4), not very informative, even, easily automated
- Copy Number polymorphisms ~2000-3000 (?) Many alleles, even, just recently automated

```
C - G
C - G
C - G
         (CA)<sub>n</sub>
G - C
         C - G G - C
C - G
A - T
A - T
```

DNA organization

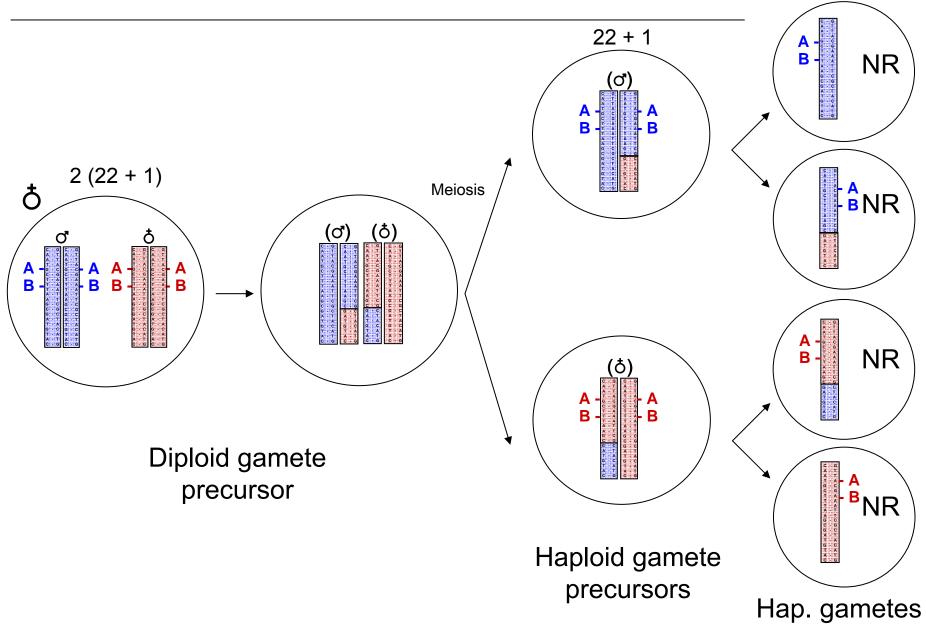


22 + 1 **DNA** recombination 22 + 1 NR В 2(22 + 1)2(22 + 1)Meiosis đ R (ď) R chr1 chr1 В Diploid gamete precursor cell NR Haploid gamete

precursors

Hap. gametes

DNA recombination between linked loci



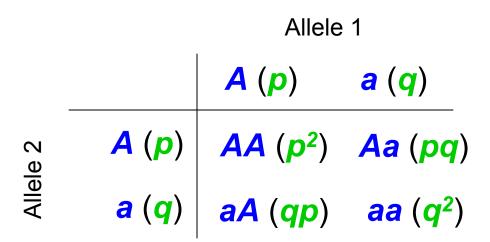
B. Population level

1. Allele frequencies

- A single <u>locus</u>, with two <u>alleles</u>
 - Biallelic
 - Single nucleotide polymorphism, SNP
- Alleles A and a
 - Frequency of A is p
 - Frequency of a is q = 1 p
- > A genotype is the combination of the two alleles

B. Population level

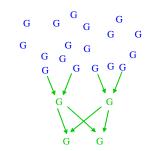
2. Genotype frequencies (Random mating)



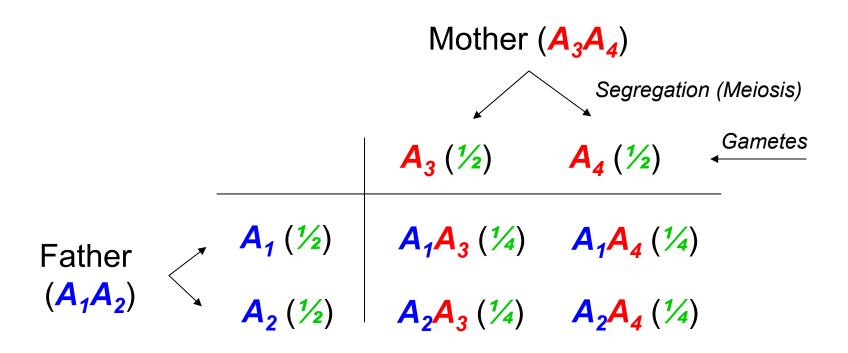
Hardy-Weinberg Equilibrium frequencies

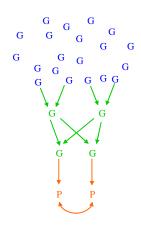
$$P(AA) = p^{2}$$
 $P(Aa) = 2pq$
 $p^{2} + 2pq + q^{2} = 1$
 $P(aa) = q^{2}$

C. Transmission level



Mendel's law of segregation





1. Classical Mendelian traits

- Dominant trait
 - **AA**, **Aa**
 - aa

Huntington's disease

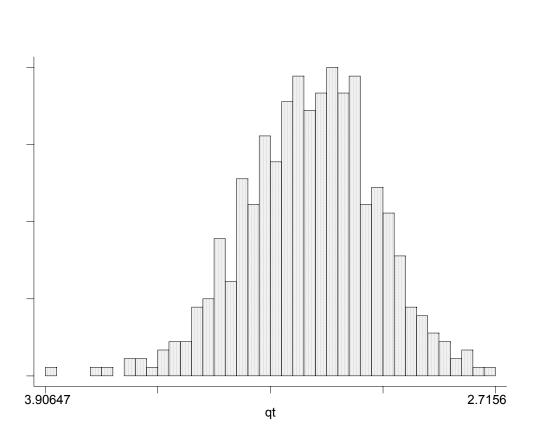
(CAG)n repeat, huntingtin gene

- - **AA** 1
 - aa, Aa 0

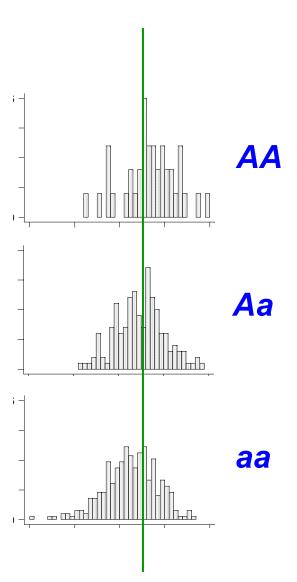
Cystic fibrosis

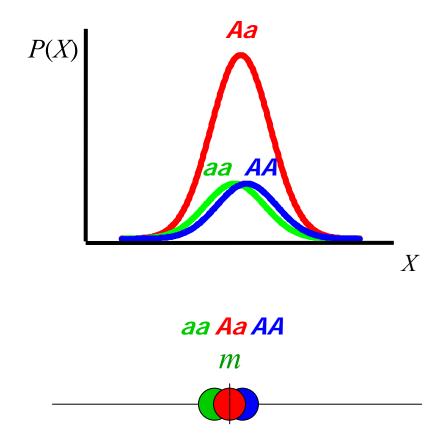
3 bp deletion exon 10 CFTR gene

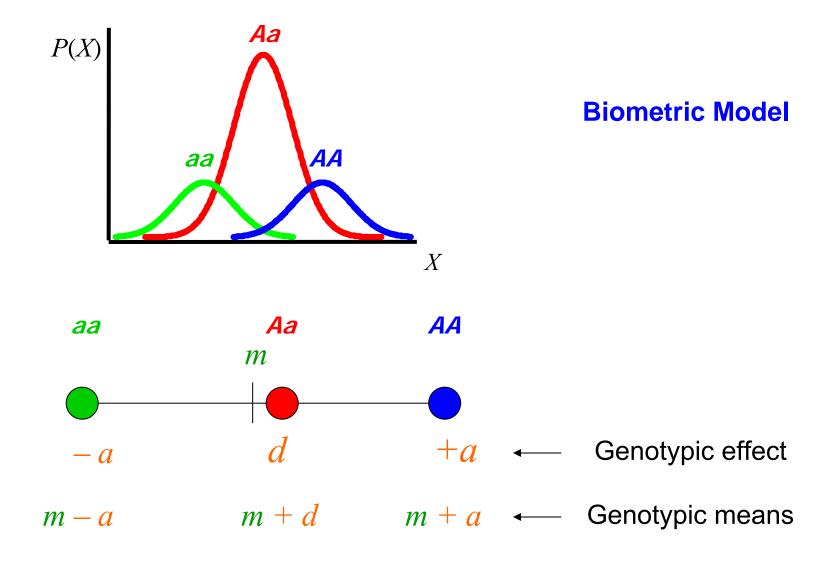
2. Quantitative traits



e.g. cholesterol levels







2. Very basic statistical concepts

Mean, variance, covariance

1. Mean (*X*)

$$\mu(X) = \frac{\sum_{i} x_{i}}{n}$$

$$= \sum_{i} x_{i} f(x_{i})$$

Mean, variance, covariance

2. Variance (X)

$$Var(X) = \frac{\sum_{i} (x_i - \mu)^2}{n - 1}$$
$$= \sum_{i} (x_i - \mu)^2 f(x_i)$$

$$X$$
 $X-\mu$ $(X-\mu)^2$
 X_1 $X_1-\mu$ $(X_1-\mu)^2$
 X_2 $X_2-\mu$ $(X_2-\mu)^2$
 X_3 $X_3-\mu$ $(X_3-\mu)^2$
 X_4 $X_4-\mu$ $(X_4-\mu)^2$
 \dots \dots \dots X_n $X_n-\mu$ $(X_n-\mu)^2$

Mean, variance, covariance

3. Covariance (X, Y)

$$Cov(X,Y) = \frac{\sum_{i} (x_{i} - \mu_{X})(y_{i} - \mu_{Y})}{n-1}$$

$$= \sum_{i} (x_{i} - \mu_{X})(y_{i} - \mu_{Y})$$

$$= \sum_{i} (x_{i} - \mu_{X})(y_{i} - \mu_{Y}) f(x_{i}, y_{i})$$

$$= \sum_{i} (x_{i} - \mu_{X})(y_{i} - \mu_{Y}) f(x_{i}, y_{i})$$

$$= \sum_{i} (x_{i} - \mu_{X})(y_{i} - \mu_{Y}) f(x_{i}, y_{i})$$

$$= \sum_{i} (x_{i} - \mu_{X})(y_{i} - \mu_{Y}) f(x_{i}, y_{i})$$

$$= \sum_{i} (x_{i} - \mu_{X})(y_{i} - \mu_{Y}) f(x_{i}, y_{i})$$

$$= \sum_{i} (x_{i} - \mu_{X})(y_{i} - \mu_{Y}) f(x_{i}, y_{i})$$

$$= \sum_{i} (x_{i} - \mu_{X})(y_{i} - \mu_{Y}) f(x_{i}, y_{i})$$

$$= \sum_{i} (x_{i} - \mu_{X})(y_{i} - \mu_{Y}) f(x_{i}, y_{i})$$

$$= \sum_{i} (x_{i} - \mu_{X})(y_{i} - \mu_{Y}) f(x_{i}, y_{i})$$

3. Biometrical model

- Biallelic locus
 - Genotypes: AA, Aa, aa
 - Genotype frequencies: p², 2pq, q²
- Alleles at this locus are transmitted from P-O according to Mendel's law of segregation
- Genotypes for this locus influence the expression of a quantitative trait X (i.e. locus is a QTL)

Biometrical genetic model that estimates the contribution of this QTL towards the (1) Mean, (2) Variance and (3) Covariance between individuals for this quantitative trait X

1. Contribution of the QTL to the Mean (X)

 $\mu = \sum_{i} x_{i} f(x_{i})$

e.g. cholesterol levels in the population

Genotypes	AA	Aa	aa
Effect, x	a	d	-a
Frequencies, $f(x)$	p^2	2pq	q^2

Mean
$$(X) = a(p^2) + d(2pq) - a(q^2) = a(p-q) + 2pqd$$

2. Contribution of the QTL to the Variance (X)

$$Var = \sum_{i} (x_i - \mu)^2 f(x_i)$$

Genotypes AA Aa aa
Effect,
$$x$$
 a d -a
Frequencies, $f(x)$ p^2 $2pq$ q^2

$$Var(X) = (a-m)^2p^2 + (d-m)^22pq + (-a-m)^2q^2$$

= V_{QTL}

Broad-sense heritability of X at this locus = V_{QTL}/V_{Total}

$$Var(X) = (a-m)^{2}p^{2} + (d-m)^{2}2pq + (-a-m)^{2}q^{2}$$

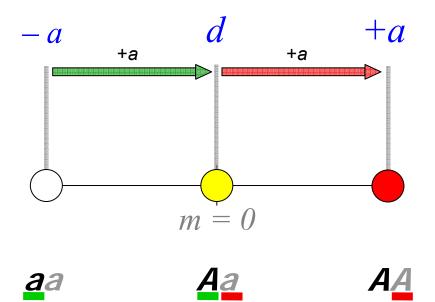
$$m = a(p-q) + 2pqd = \frac{2pq[a+(q-p)d]^{2}}{2pq} + \frac{(2pqd)^{2}}{2pq}$$

$$= V_{AOTL} + V_{DOTL}$$
Demonstration: final 3 slides

Additive effects: the main effects of individual alleles

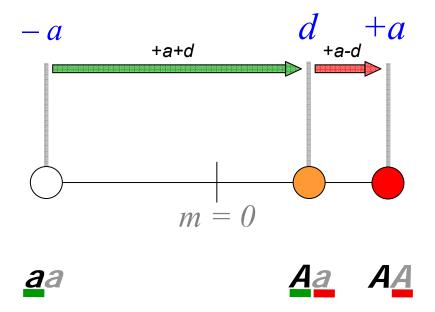
Dominance effects: represent the interaction between alleles

$$d = 0$$



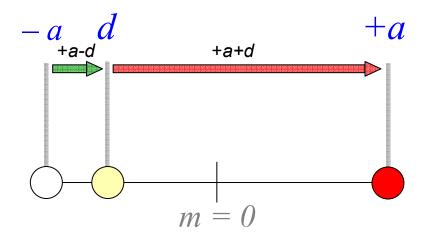
Additive

d > 0



Dominant

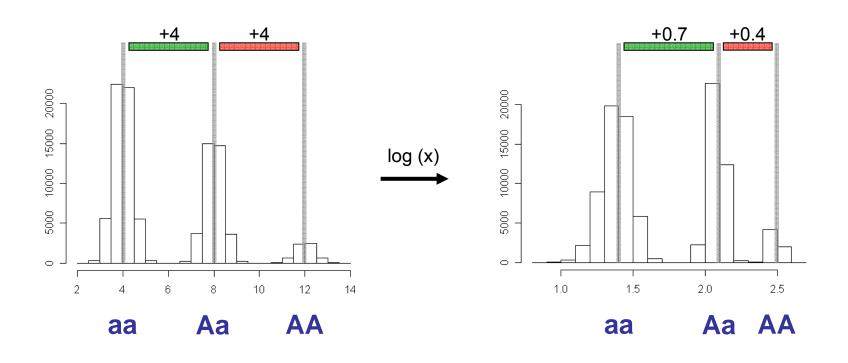
d < 0



 $A\underline{A}$

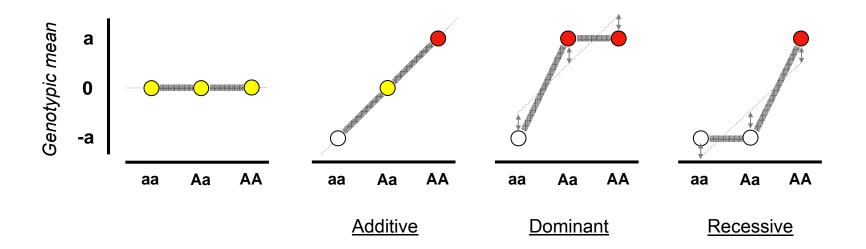
Recessive

Statistical definition of dominance is scale dependent



No departure from additivity

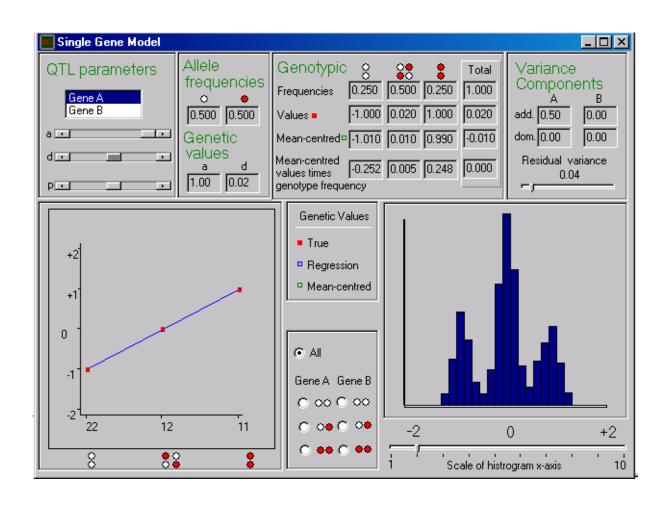
Significant departure from additivity



Var (
$$X$$
) = Regression Variance + Residual Variance
= Additive Variance + Dominance Variance
= $V_{A_{QTL}} + V_{D_{QTL}}$

Practical

H:\ferreira\biometric\sgene.exe



Practical

Visualize graphically how allele frequencies, genetic effects, dominance, etc, influence trait mean and variance

Ex1

a=0, d=0, p=0.4, Residual Variance = 0.04, Scale = 2. Vary \underline{a} from 0 to 1.

Ex2

a=1, d=0, p=0.4, Residual Variance = 0.04, Scale = 2. Vary <u>d</u> from -1 to 1.

Ex3

a=1, d=0, p=0.4, Residual Variance = 0.04, Scale = 2. Vary \underline{p} from 0 to 1.

Look at scatter-plot, histogram and variance components.

Some conclusions

1. Additive genetic variance depends on

allele frequency p
& additive genetic value a

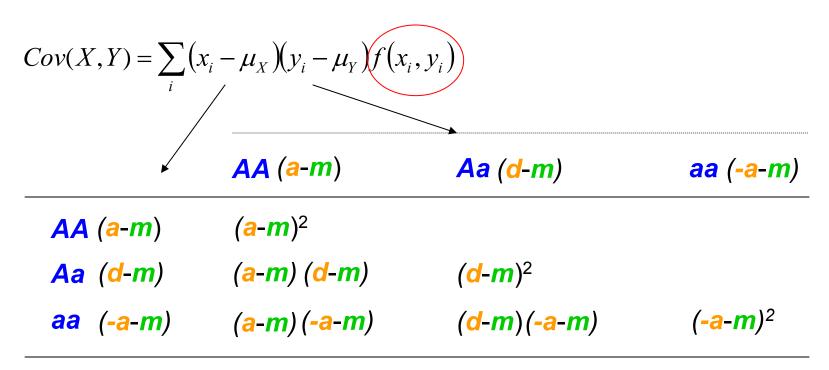
as well as

dominance deviation d

2. Additive genetic variance typically greater than dominance variance

- 1. Contribution of the QTL to the Mean (X)
- 2. Contribution of the QTL to the Variance (X)
- 3. Contribution of the QTL to the Covariance (X, Y)

3. Contribution of the QTL to the Cov (X, Y)



3A. Contribution of the QTL to the Cov (X, Y) – MZ twins

$$Cov(X,Y) = \sum_{i} (x_i - \mu_X)(y_i - \mu_Y) f(x_i, y_i)$$

$$AA (a-m)$$
 $Aa (d-m)$ $aa (-a-m)$
 $AA (a-m)$ $p^2(a-m)^2$
 $Aa (d-m)$ $0 (a-m) (d-m)$ $2pq (d-m)^2$
 $aa (-a-m)$ $0 (a-m) (-a-m)$ $0 (d-m) (-a-m)$ $q^2 (-a-m)^2$

$$Cov(X,Y) = (a-m)^2p^2 + (d-m)^22pq + (-a-m)^2q^2$$

= $2pq[a+(q-p)d]^2 + (2pqd)^2 = V_{AQTL} + V_{DQTL}$

3B. Contribution of the QTL to the Cov (X, Y) – Parent-Offspring

	AA (a-m)	Aa (d-m)	aa (-a-m)
AA (a-m)	p ³ (a-m) ²		
Aa (d-m)	p ² q (a-m) (d-m)	pq (d-m) ²	
aa (-a-m)	0 (a-m) (-a-m)	pq ² (d-m)(-a-m)	q³ (-a-m) ²

• e.g. given an AA father, an AA offspring can come from either $AA \times AA$ or $AA \times Aa$ parental mating types

AA x AA will occur
$$p^2 \times p^2 = p^4$$

and have AA offspring Prob()=1
AA x Aa will occur $p^2 \times 2pq = 2p^3q$
and have AA offspring Prob()=0.5
and have Aa offspring Prob()=0.5

Therefore, P(AA father & AA offspring)
$$= p^4 + p^3q$$

 $= p^3(p+q)$
 $= p^3$

3B. Contribution of the QTL to the Cov (X, Y) – Parent-Offspring

$$AA (a-m)$$
 $Aa (d-m)$ $aa (-a-m)$
 $AA (a-m)$ $p^3(a-m)^2$
 $Aa (d-m)$ $p^2q (a-m) (d-m)$ $pq (d-m)^2$
 $aa (-a-m)$ $0 (a-m) (-a-m)$ $pq^2 (d-m) (-a-m)$ $q^3 (-a-m)^2$

$$Cov(X,Y) = (a-m)^2p^3 + ... + (-a-m)^2q^3$$

= $pq[a+(q-p)d]^2 = \frac{1}{2}V_{A_{QTL}}$

3C. Contribution of the QTL to the Cov (X, Y) – Unrelated individuals

$$Cov(X,Y) = (a-m)^2p^4 + ... + (-a-m)^2q^4$$

= 0

3D. Contribution of the QTL to the Cov (X, Y) – DZ twins and full sibs

identical alleles inherited from parents

2
1
(father)

(mother)

$$\frac{1}{4}$$
 (2 alleles)

MZ twins

$\frac{1}{4}$ (2 alleles)

P-O

Unrelateds

Cov (X,Y) = $\frac{1}{4}$ Cov(MZ) + $\frac{1}{2}$ Cov(P-O) + $\frac{1}{4}$ Cov(Unrel)

= $\frac{1}{4}$ ($\frac{1}{4}$ Cov(MZ) + $\frac{1}{2}$ Cov(P-O) + $\frac{1}{4}$ Cov(Unrel)

= $\frac{1}{4}$ ($\frac{1}{4}$ Cov(MZ) + $\frac{1}{4}$ Cov(Drel)

= $\frac{1}{4}$ ($\frac{1}{4}$ Cov(MZ) + $\frac{1}{4}$ ($\frac{1}{4}$ Cov(Unrel)

= $\frac{1}{4}$ ($\frac{1}{4}$ Cov(MZ) + $\frac{1}{4}$ ($\frac{1}{4}$ Cov(Unrel)

= $\frac{1}{4}$ ($\frac{1}{4}$ Cov(MZ) + $\frac{1}{4}$ ($\frac{1}{4}$ Cov(Unrel)

Summary so far...

Biometrical model predicts contribution of a QTL to the mean, variance and covariances of a trait

Mean (X) =
$$a(p-q) + 2pqd$$
 Association analysis

$$Var(X) = V_{A_{QTL}} + V_{D_{QTL}} + V_{D_{QTL}}$$

$$Cov(MZ) = V_{A_{QTL}} + V_{D_{QTL}}$$

$$Cov(DZ) = \frac{1}{2}V_{A_{QTL}} + \frac{1}{4}V_{D_{QTL}}$$
On average!

$$0, \frac{1}{2} \text{ or } 1$$
For a sib-pair, do the two sibs have 0, 1 or 2 alleles in common?

IBD estimation / Linkage

4. Introduction to Linkage Analysis

For a heritable trait...

Linkage:

<u>localize</u> region of the genome where a QTL that regulates the trait is likely to be harboured

Family-specific phenomenon:

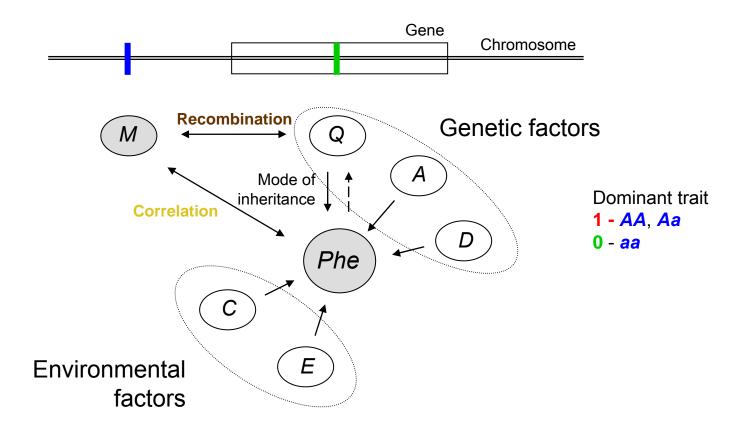
Affected individuals in a family share the same ancestral predisposing DNA segment at a given QTL

Association: identify a QTL that regulates the trait

Population-specific phenomenon:

Affected individuals in a population share the same ancestral predisposing DNA segment at a given QTL

Linkage Analysis: Parametric vs. Nonparametric



Approach

- Parametric: genotypes marker locus & genotypes trait locus
 (latter inferred from phenotype according to a specific disease model)
 Parameter of interest: θ between marker and trait loci
- Nonparametric: genotypes marker locus & phenotype

 If a trait locus truly regulates the expression of a phenotype, then two relatives with similar phenotypes should have similar genotypes at a marker in the vicinity of the trait locus, and vice-versa.

 Interest: correlation between phenotypic similarity and marker genotypic similarity

No need to specify mode of inheritance, allele frequencies, etc...

Phenotypic similarity between relatives

Squared trait differences

 $(X_1-X_2)^2$

Squared trait sums

 $(X_1 + X_2)^2$

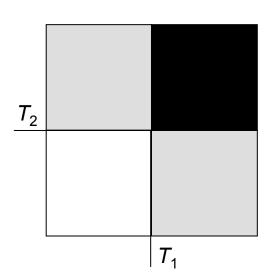
▶ Trait cross-product

 $[(X_1 - \mu) \cdot (X_2 - \mu)]$

▶ Trait variance-covariance matrix

$$\begin{cases} Var(X_1) & Cov(X_1X_2) \\ Cov(X_1X_2) & Var(X_2) \end{cases}$$

> Affection concordance



Genotypic similarity between relatives

► IBS Alleles shared Identical By State "look the same", may have the same DNA sequence but they are not necessarily derived from a known common ancestor

Alleles shared

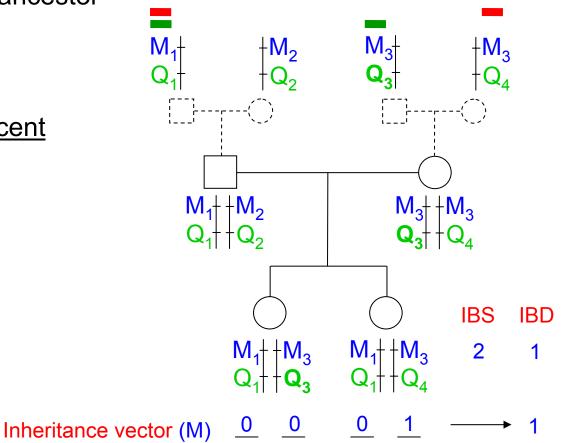
Identical By Descent

are a copy of the

same

ancestor

allele



Genotypic similarity between relatives - π

Inheritance vector (M)

Number of alleles shared IBD

0

Proportion of alleles shared IBD - π

0

$$\begin{array}{cccc}
& & & \\
& & \\
M_1 + M_3 & & M_1 + W
\end{array}$$

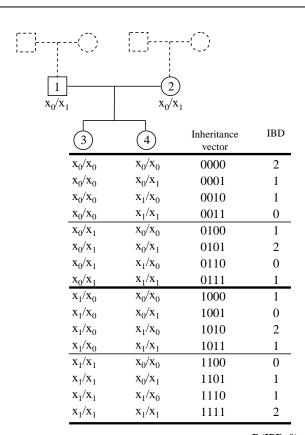
0.5

2

1

Genotypic similarity between relatives - $\hat{\pi}$

B



2²ⁿ

P (IBD=0)
P (IBD=1)

P (IBD=2)

$$\hat{\pi} =$$

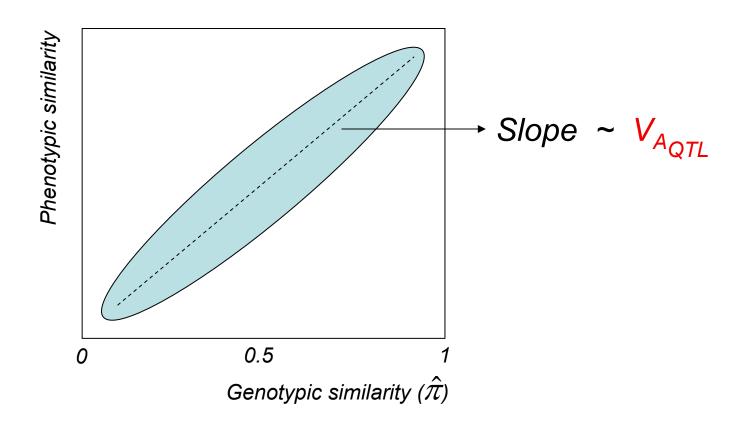
$$Var(X) = V_{A_{QTL}} + V_{D_{QTL}}$$

$$Cov(MZ) = V_{A_{QTL}} + V_{D_{QTL}}$$

$$Cov(DZ) = \frac{1}{2}V_{A_{QTL}} + \frac{1}{4}V_{D_{QTL}}$$
On average!

$$Cov(DZ) = \widehat{\pi} \cdot V_{A_{QTL}} + \widehat{\pi}_2 \cdot V_{D_{QTL}}$$
 For a given twin pair

$$Cov(DZ) = \hat{\pi} \cdot V_{A_{QTL}}$$
 $Cov(DZ) = V_{A_{QTL}} \cdot \hat{\pi}$

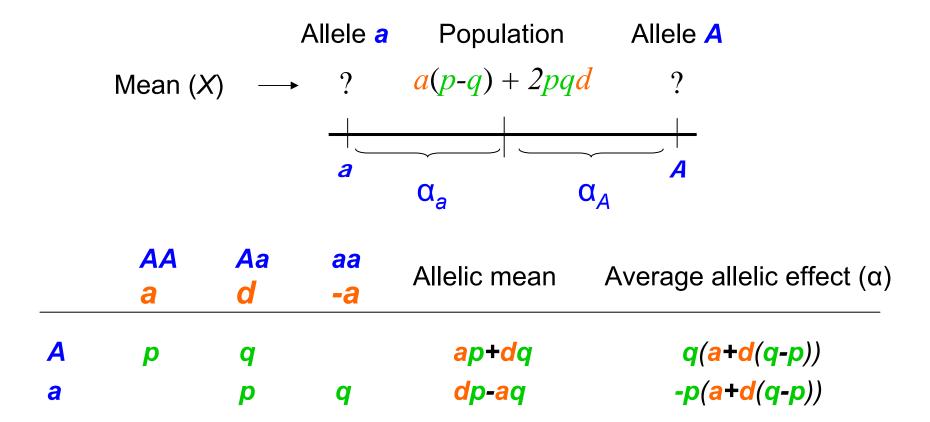


Statistics that incorporate both phenotypic and genotypic similarities to test V_{QTL}

- Regression-based methodsHaseman-Elston, MERLIN-regress
- Variance components methods
 Mx, MERLIN, SOLAR, GENEHUNTER

2A. Average allelic effect (α)

The deviation of the <u>allelic mean</u> from the <u>population mean</u>



- Denote the average allelic effects
 - $-\alpha_A = q(a+d(q-p))$
 - $-\alpha_a = -p(a+d(q-p))$
- If only two alleles exist, we can define the average effect of allele substitution

$$-\alpha = \alpha_A - \alpha_a$$

- \alpha = (q-(-p))(a+d(q-p)) = (a+d(q-p))

- Therefore:
 - $-\alpha_A = q\alpha$
 - $-\alpha_a = -p\alpha$

2A. Average allelic effect (α)

2B. Additive genetic variance

The variance of the average allelic effects

$$\alpha_A = q\alpha$$
 $\alpha_a = -p\alpha$

	Freq.	Additive effect	
AA	p ²	2α _A	= 2 q α
Aa	2pq	$\alpha_A + \alpha_a$	$= (q-p)\alpha$
aa	q^2	$2\alpha_a$	= -2 p α

$$V_{A_{QTL}} = (2q\alpha)^{2}p^{2} + ((q-p)\alpha)^{2}2pq + (-2p\alpha)^{2}q^{2}$$

$$= 2pq\alpha^{2}$$

$$= 2pq[a+d(q-p)]^{2}$$

$$d = 0, V_{A_{QTL}} = 2pqa^{2}$$

$$p = q, V_{A_{QTL}} = \frac{1}{2}a^{2}$$