Biometrical genetics

Manuel AR Ferreira

Massachusetts General Hospital Harvard Medical SchoolBoston

Boulder, 2008

- Revisit common genetic parameters such as allele frequencies, \triangleright genetic effects, dominance, variance components, etc
- Use these parameters to construct a biometric genetic model \triangleright

Model that expresses the:

(1) Mean

(2) Variance

(3) Covariance between individuals

for a quantitative phenotype as a function of the genetic parameters of a given locus.

See how the biometric model provides a useful framework for linkage and association methods.

Outline

- 1. Genetic concepts
- 2. Very basic statistical concepts
- 3. Biometrical model
- 4. Introduction to linkage analysis

1. Genetic concepts

A. DNA level

DNA structure, organization recombination

C-G A

B. Population level

Allele and genotype frequencies

C. Transmission level

Mendelian segregation Genetic relatedness

D. Phenotype level

Biometrical modelAdditive and dominance components

A. DNA level

- \triangleright A DNA molecule is a linear backbone of alternating sugar residues and phosphate groups
- Attached to carbon atom 1' of each sugar \triangleright is a nitrogenous base: A, C, G or T
- \triangleright Two DNA molecules are held together in anti-parallel fashion by hydrogen bonds between bases [Watson-Crick rules] *Antiparallel double helix*
- A gene is a segment of DNA which \triangleright is transcribed to give a protein or RNA product
- Only one strand is read during gene \triangleright transcription

Nucleotide: 1 phosphate group + 1 sugar + 1 base \triangleright

DNA polymorphisms

Microsatellites >100,000 Many alleles, eg. (CA)_n repeats, very informative, even, easily automated

\triangleright SNPs

11,883,685 (build 128, 03 Mar '08) Most with 2 alleles (up to 4), not very informative, even, easily automated

 \triangleright Copy Number polymorphisms $~1$ ~2000-3000 (?) Many alleles, even, just recently automated

DNA organization

Diploid gamete precursor (♂) (♁) **C-GA - T A - T T - AG-CC-GT - AT - AT - AA - T A - T G-CC-GG-C - T T - AG-CT - A - T C-GC-GA - T A - T T - AG-CC-GT - AT - AT - AA - T A - T G-CC-GG-CA - T T - AG-CT - AA - T C-GC-G - T A - T T - AG-CC-GT - AT - AT - AA - T A - T G-CC-GG-C - T T - AG-CT - AA - T C-GC-GA - T A - T T - AG-CC-GT - AT - AT - A - T - T G-CC-GG-CA - T T - AG-CT - AA - T C-GC-GA - T A - T T - AG-CC-GT - AT - AT - A - T - T G-CC-GG-C - T T - AG-CT - AA - T C**-G **C-G - T - T T - AG-CC-GT - AT - AT - A - T - T G-CC-GG-C - T T - AG-CT - A - T C-GC-GA - T - T T - AG-CC-GT - AT - AT - A - T - T G-CC-GG-C A - T T - A G-C T - A A - T C-G** $\langle \sigma \rangle$ (♁) **C-GA - T A - T T - AG-CC-GT - AT - AT - AA - T A - T G-CC-GG-CA - T T - AG-CT - AAHaploid gamete** precursors

Hap. gametes NR NR NR NR ♁ **A -B -- A- BA -B -- A- BA -B -- A - B A -B - A - B** ♂ ♁**C-G - T A - T T -G-CC-GT -T -T - A A A A - T - T G-CC-GG-C - T T - AG-CT - A - T C-GC-GA - T A - T T - AG-CC-GT - AT - AT - AA - T A - T G-CC-GG-CA - T T - AG-CT - AA - T C-GA - B - A - B - - A B -- A B -C-GA - T A - T T -G-CC-GT -T -T - A A A AA - T A - T G-CC-G G-CA - T T - AG-CT - A - T C-G-G-G-G C-G - T - T T - AG-CC-GT - AT - AT - A - T - T G-CC-GG-C - T T - AG-C-C T - A - T C-GC-G - T - T T - AG-CC-GT - AT - AT - A - T - T G-CC-GG-C - T T - AG-CT - A - T C-GC-GA - T A - T T - AG-CC-GT - AT - AT - AA - T A - T G-CC-GG-CA - T T - AG-CT - AA - T C-GC-G - T - T T - AG-CC-GT - AT - AT - AA - T A - T G-CC-GG-C - T T - AG-CT - AA - T C-GC-GA - T A - T T - AG-CC-GT - AT - AT - AA - T A - T G-CC-GG-CA - T T - AG-CT - AA - T C-G**Meiosis $2(22 + 1)$ $22 + 1$

DNA recombination between linked loci

B. Population level

1. Allele frequencies

- A single locus, with two alleles \triangleright
	- Biallelic
	- Single nucleotide polymorphism, SNP
- \triangleright Alleles *A* and *a*
	- Frequency of *A* is *p*
	- Frequency of *^a* is *q* = 1 *p*

A a Aa

B. Population level

2. Genotype frequencies (Random mating)

Hardy-Weinberg Equilibrium frequencies

$$
P(AA) = p^2
$$

\n $P(Aa) = 2pq$
\n $P(aa) = q^2$
\n $p^2 + 2pq + q^2 = 1$

C. Transmission level

Mendel's law of segregation

1. Classical Mendelian traits

 \triangleright Dominant trait - *AA*, *Aa* **1** - *aa* **0** **Huntington's disease** *(CAG)n repeat, huntingtin gene*

- \triangleright Recessive trait - *AA* **1**
	- *aa, Aa* **0**

Cystic fibrosis *3 bp deletion exon 10 CFTR gene*

2. Very basic statistical concepts

Mean, variance, covariance

1. Mean (*X*)

$$
\mu(X) = \frac{\sum_{i} x_i}{n}
$$

 X_1 x_2 x_3 X_4 … x n

X

= $\sum x_i f(x_i)$ *i* $x_i f(x_i)$

Mean, variance, covariance

2. Variance (*X*)

$$
Var(X) = \frac{\sum_{i} (x_i - \mu)^2}{n - 1}
$$

$$
= \sum_i (x_i - \mu)^2 f(x_i)
$$

Mean, variance, covariance

3. Covariance (*X,Y*)

$$
Cov(X, Y) = \frac{\sum_{i} (x_i - \mu_X)(y_i - \mu_Y)}{n - 1}
$$

$$
= \sum_i (x_i - \mu_X)(y_i - \mu_Y) f(x_i, y_i)
$$

3. Biometrical model

- \triangleright Biallelic locus
	- Genotypes: *AA***,** *Aa***,** *aa*
	- Genotype frequencies: *p 2, 2pq, q 2*
- Alleles at this locus are transmitted from P-O according to \triangleright Mendel's law of segregation
- Genotypes for this locus influence the expression of ^a \triangleright quantitative trait *X* (i.e. locus *is* a QTL)

Biometrical genetic model that estimates the contribution of this QTL towards the **(1) Mean**, **(2) Variance** and **(3) Covariance between individuals** for this quantitative trait *X*

$$
\mu = \sum_i x_i f(x_i)
$$

= *a (p 2)* ⁺ *d (2pq) Mean* (*X*) = $a(p^2) + d(2pq) - a(q^2) = a(p-q) + 2pqd$

2. Contribution of the QTL to the Variance (*X*)

$$
Var = \sum_{i} (x_i - \mu)^2 f(x_i)
$$

Var (X) =
$$
(a-m)^2p^2 + (d-m)^22pq + (-a-m)^2q^2
$$

= V_{QTL}

Broad-sense heritability of X at this locus = $\boldsymbol{V}_{\mathsf{Q}\mathcal{T}\mathsf{L}}$ / $\boldsymbol{V}_{\mathsf{Total}}$

Var (X) =
$$
(a-m)^2p^2 + (d-m)^22pq + (-a-m)^2q^2
$$

$$
= 2pq[a+(q-p)d]^2 + (2pqd)^2
$$

 $=$ *VAQTL* ⁺ *VDQTL*

m = *^a*(*p-q*) + *2pqd*

Demonstration: final 3 slides

Additive effects: the main effects of individual alleles

Dominance effects: represent the interaction between alleles

d = 0

d > 0

d < 0

Statistical definition of dominance is scale dependent

No departure from additivity

Significant departure from additivity

Var (*X*) = Regression Variance + Residual Variance

= Additive Variance + Dominance Variance

$$
= V_{A_{QTL}} + V_{D_{QTL}}
$$

Practical

H:\ferreira\biometric\sgene.exe

Practical

Aim Visualize graphically how allele frequencies, genetic effects, dominance, etc, influence trait mean and variance

Ex1

 $a=0$, $d=0$, $p=0.4$, Residual Variance = 0.04, Scale = 2. Vary \underline{a} from 0 to 1.

Ex2

 $a=1$, $d=0$, $p=0.4$, Residual Variance = 0.04, Scale = 2. Vary d from -1 to 1.

Ex3

 $a=1$, $d=0$, $p=0.4$, Residual Variance = 0.04, Scale = 2. Vary p from 0 to 1.

Look at scatter-plot, histogram and variance components.

Some conclusions

1. Additive genetic variance depends on *allele frequency p & additive genetic value a* as well as *dominance deviation d*

2. Additive genetic variance typically greater than dominance variance

1. Contribution of the QTL to the Mean (*X*)

2. Contribution of the QTL to the Variance (*X*)

3. Contribution of the QTL to the Covariance (*X,Y*)

3. Contribution of the QTL to the Cov (*X,Y*)

3A. Contribution of the QTL to the Cov (*X,Y)* – MZ twins

$$
Cov(X, Y) = \sum_{i} (x_i - \mu_X)(y_i - \mu_Y)(f(x_i, y_i))
$$

= *(a-m) 2p 2* + *(d-m) 2* 2*pq* ⁺*(- a-m) 2* $Cov(X, Y) = (a-m)^2p^2 + (d-m)^22pq + (-a-m)^2q^2$ (*X,Y*)

$$
= 2pq[a+(q-p)d]^2 + (2pqd)^2 = V_{A_{QTL}} + V_{D_{QTL}}
$$

3B. Contribution of the QTL to the Cov (*X,Y*) – Parent-Offspring

• *e.g.* given an *AA* father, an *AA* offspring can come from either *AA* ^x*AA* or *AA* ^x*Aa* parental mating types

Therefore, P(*AA* father & *AA* offspring) = $p^4 + p^3q$ *= p3(p+q)* $= p³$

3B. Contribution of the QTL to the Cov (*X,Y*) – Parent-Offspring

$$
Cov(X,Y) = (a-m)^2p^3 + ... + (-a-m)^2q^3
$$

= $pq[a+(q-p)d]^2 = 1/2V_{A_{QTL}}$

3C. Contribution of the QTL to the Cov (*X,Y*) – Unrelated individuals

AA (a Aa (d-*^m) (a aa (-a AA (a* - *m*) *Aa aa (d*-*^m) (-a* - *^m)* - *m*) *(a* - *^m) (-a* $\bm{p^4}$ (a-m)² 2p³q(a-m)(d-m) 4p²q²(d-m)² *(*a-m) (-a-m) - *^m) (d*-*m*) *(-a* - *^m) (-a* - *^m) 2 p 2 q 2* 2pq³ (d-m) (-a-m) q⁴

$$
Cov(X,Y) = (a-m)^2p^4 + ... + (-a-m)^2q^4
$$

= 0

3D. Contribution of the QTL to the Cov (*X,Y*) – DZ twins and full sibs

Cov (*X,Y*) ⁼*¼ Cov(MZ) + ½ Cov(P-O) + ¼ Cov(Unrel)* = ¼(*VAQTL* + *VDQTL*) + ½ (½ *VAQTL) + ¼ (0)* $=$ $\frac{1}{2}$ *VAQTL +* ¼ $V^{}_{D_{QT\!L}}$

Summary so far…

 \triangleright Biometrical model predicts contribution of a QTL to the mean, variance and covariances of a trait

IBD estimation / Linkage

4. Introduction to Linkage Analysis

For a heritable trait...

<u>localize</u> region of the genome where a QTL that regulates the trait is likely to be harboured **Linkage:** Family-specific phenomenon: Affected individuals in a family share the same ancestral predisposing DNA segment at a given QTL

Association: identify a QTL that regulates the trait

Population-specific phenomenon: Affected individuals in a population share the same ancestral predisposing DNA segment at a given QTL

Linkage Analysis: Parametric vs. Nonparametric

Approach

Parametric: genotypes marker locus & genotypes trait locus \triangleright

(latter inferred from phenotype according to a specific disease model) Parameter of interest: *θ* between marker and trait loci

► Nonparametric: genotypes marker locus & phenotype

If a trait locus truly regulates the expression of a phenotype, then two relatives with similar phenotypes should have similar genotypes at a marker in the vicinity of the trait locus, and vice-versa. Interest: correlation between phenotypic similarity and marker genotypic similarity

No need to specify mode of inheritance, allele frequencies, etc...

Phenotypic similarity between relatives

- $(X_1 X_2)^2$ **▶ Squared trait differences** $(X_1 + X_2)^2$ **Squared trait sums** \triangleright $[$ ($(X_1 - \mu) \cdot (X_2 - \mu)$ $-\mu$) \cdot (**Trait cross-product** \triangleright $\left\{\n \begin{array}{cc}\n Var(X_1) & Cov(X_1X_2)\n \end{array}\n\right\}$ $\left($ ⎫ $Var(X_1)$ $Cov(X_1)$ Trait variance-covariance matrix $1 / 2$ ⎨ $\left\{ \right\}$ \triangleright $(X_1 X_2)$ $Var(X_2)$ $\overline{\mathcal{L}}$ $Cov(X_1X_2)$ *Var*(*X*
- Affection concordance \triangleright

 1^{21} 2) 1^{21}

Genotypic similarity between relatives

- Alleles shared Identical By State "look the same", may have the **IBS** \triangleright same DNA sequence but they are not necessarily derived from a known common ancestor
- IBD Alleles shared \triangleright **Identical By Descent** are a copy of the sameancestor allele

Genotypic similarity between relatives - π

Genotypic similarity between relatives - $\hat{\pi}$

AB C

D

P (IBD=0) P (IBD=1) P (IBD=2)

 $\boldsymbol{\wedge}$ $\boldsymbol{\wedge}$ $\boldsymbol{\wedge}$ $\boldsymbol{\wedge}$ $\pi =$

$$
Var(X) = V_{A_{QTL}} + V_{D_{QTL}}
$$

\n
$$
Cov(MZ) = V_{A_{QTL}} + V_{D_{QTL}}
$$

\n
$$
Cov(DZ) = (V_2)_{A_{QTL}} + (V_4)_{D_{QTL}}
$$

\nOn average!

$$
Cov(DZ) = (\hat{\pi}) \cdot V_{A_{QTL}} + (\hat{\pi}) \cdot V_{D_{QTL}}
$$

For a given twin pair

Statistics that incorporate both phenotypic and genotypic similarities to test V_{QTL}

- \triangleright Regression-based methods Haseman-Elston, MERLIN-regress
- Variance components methods \triangleright Mx, MERLIN, SOLAR, GENEHUNTER

2A. Average allelic effect (α)

The deviation of the <u>allelic mean</u> from the <u>population mean</u>

- Denote the average allelic effects \triangleright
	- *^αA* ⁼ *q (a + d (q -p))*
	- *^αa* ⁼*-p (a + d (q -p))*
- If only two alleles exist, we can define the *average effect of* \triangleright *allele substitution*
	- *α* = *^αA- ^αa*
	- *α* = *(q- (-p))(^a + d (q -p)) = (^a + d (q -p))*
- \triangleright Therefore:
	- *^αA* ⁼ *q α* - *^αa* ⁼*-p α*

2A. Average allelic effect (α)

2B. Additive genetic variance

The variance of the average allelic effects

^αA ⁼ *q α ^αa* ⁼*-p α*

$$
V_{A_{QTL}} = (2qa)^{2}p^{2} + ((q-p)\alpha)^{2}2pq + (-2pa)^{2}q^{2}
$$

= 2pq\alpha^{2}

$$
= 2pq[a+d(q-p)]^2
$$

$$
d = 0, V_{A_{QTL}} = 2pq a^2
$$

$$
p = q, V_{A_{QTL}} = 1/2a^2
$$