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Why conduct longitudinal analyses?

1. Can improve power by using multiple
observations from the same individual

- Cross twin cross trait correlation

2. Can examine and estimate time-dependent
genetic and environmental effects
- Changing magnitude of genetic &
environmental influence across time

- Same versus different genes across
development



Methods for Longitudinal Data
Analysis
1. Cholesky Models
2. Simplex Models
Eaves et al., 1986

Boomsma & Molenaar, 1987
3. Growth Curve Models



AIms

1. Revisit the Mx trivariate Cholesky

2. Take a look at simplex or auto-regression
models

- Explain some of the underlying theory of
this form of longitudinal modelling

- Run through an Mx script

3. Compare the Cholesky and simplex
models



Longitudinal modeling of
adolescent personality

Introduce longitudinal modeling in the
context of personality change

Eaves, Eysenck & Martin (1989)

- Adult personality - High of genetic
continuity over time

- Effect stronger in Neuroticism vs
Extraversion

Genetic continuity in adolescents?



Personality Data

win Mole and Twin MAPS projects

Assess the genetic / environmental etiology
of Melanocytic Naevi (common moles) in
twins aged 12 & 14 years + Cognition at 16

81 items JEPQ: Psychoticism (P),
Extraversion (E), and Neuroticism (N)

Twin Mole Twin MAPS
12 yrs 14 yrs 16 yrs

P E N L P E N L P E N L

Male 603 604 606 605 465 466 466 467 416 412 416 415
Female 605 602 607 609 471 470 473 473 442 438 442 442



Personality Data

Raw continuous data methods

Assumptions of mean and variance
homogeneity by twin order and zygosity
(and necessarily by sex and age)



1. Cholesky Model
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Cholesky Model

Advantages:

- Logical: organized such that all factors are constrained to
Impact later, but not earlier time points

- Requires few assumptions, can predict any pattern of
change

Disadvantages:
- Not falsifiable

- Does not make predictions about what will happen in the
future (as yet unmeasured time points)

- Only feasible for limited number of measurements



Cholesky Model

Questions you can address:

- Magnitude of genetic/environmental influence at
each time

- Extent to which genetic/environmental influences
overlap across time



Run ACE Cholesky Model

neuro_f chol.mx

! Female Neuroticism at 12, 14 and 1€ years
' Multivariate Cholesky

¥Ngroups 5

fdefine nvar 2 ! wvariables

fdefine nsib 2 ! twin-1 & twin-2

fdefine nitem €

!

!

Gl: Model paramaters
Calculation

Beglin Matrices;
LOWSr nvar nvar
LOWSI nNvVar nvar
LOWSI nNvVar nvar
Full 1 1

End Matrices;
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Model Fit for Female Neuroticism

Model LL df | A2LL | Adf BIC
ACE
Cholesky 10424.88 | 1803 2352.134




Cholesky Model Fitting Results

Phenotypic correlations

MATRIX Q

This is a computed FULL matrix of order & by &
[=\STND (R+C+E|R+C R+C|R+C+E) ]
1 2 3 4 5 e

1 1.0000 05320 0.4530 0.30899 0.2877 0.1%6¢
2 0.5320 1. U0 U.o8e! 0.2877 0.4¢l¢ 0.324¢
3 0.4530 .5861 1. 0060 0.1969 0.324¢ 0.2716
4 0.3099 0.2877 0.1969 1.0000 0.5320 0.4530
5 0.2877 0.46le 0.324¢ 0.5320 1.0000 0.5867
& 0.1969 0.3246 0.271¢6 0.4530 0.58¢€7 1.0000
Proportions of variance

MATRIX 3

This is a computed FULL matrix of order 3 by ]

[=L% (A+C+E) |CH(A+C+E) | EF (A+C+HE) ]
1 2 3 4 5

1 022884 0.5030  0.3395 | 0.0215  0.0377

2 0.5020 ﬁl ﬂ 0.0277 0.0187

3 0.3395 0.4848 0.0851 0.0&85

B 9

1 0.45683 0.5e54

2 0.5384 0.44867 -

3 0.44¢7 0.7284 C
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Cholesky Model Fitting Results

MATEIX T
This is a computed FULL matrix of order 2 by 3
[=\STND(A) ]
1 2 3
1 1.0000 0.7487 J.6e52
2z 0.7487 1.0000 0.9930
3 0.6652 0.8930 1.0000
MATEIX U
This is a computed FULL matrix of order 2 by 3
[=\STND (C) ]
1 2 3
1 1.0000 1.0000 1.0000
2 1.0000 1.0000 1.0000
3 1.0000 1.0000 1.0000
MATEIX V
This is a computed FULL matrix of order 2 by 3
[=\STND (E} ]
1 2 3
1 1.0000 0.4006 0.36l13
2 0.4006 1.0000 0.4185
3 0.3613 0.4185 1.0000
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Simplex or autoregressive
models

Simplex designs model changes in true scores

(Ypy) over time by fitting auto-regressive or N as N
Markovian chains @ @ o
Each true score is predicted to be causally related
to the immediately preceding latent true score in a 1 1 1

linear fashion l l l

Y Y Y3

y[t]n = B[t]n X y[t-1]n + C’[t]n

By = linear regression of latent factor (yy) on the‘
previous latent factor (yy_;), iy = new input,
change or innovation at time ;, uncorrelated

with yp 4



Simplex Model
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ACE Simplex Model script

neuro f simplex.mx

I Neuroticism - Females
!

#Ngroups 5 !
fdefine nsib=2 |number
#define nvar=3 I'number

Gl:
Calculation
Begin Matrices;

End Matrices;
Matrix H .5

Specify N
0

10 0

g 11 0

Model paramaters

Free
Free
Free
Free
Free
Free
Free

¥ Diag nvar nvar

N Lower nvar nvar

Y Diag nvar nvar

O Lower nvar nvar

Zz Diag nvar nvar

P Lower nvar nvar

U Diag nvar nvar

I ITdentity nvar nvar
H Full 1 1

of siblings
of wvariables

Genetic innovations

Genetic transmission paths

Common environmental Innovations

Common environmental transmission paths
Specific environmental innovations
Specific environmental transmission paths
Measurement error variance



Model Fitting Results

Model LL df |A2LL | Adf| p BIC

ACE
Cholesky | 10424.88 | 1803 | - - - 2352.13

Full
Simplex

AE Simplex

CE Simplex

E Simplex




Model Fitting Results

Model LL df | A2LL | Adf P BIC
ACE

Cholesky 10424.88 | 1803 - - - 2352.13
Full

Simplex 10425.113 | 1805 | 0.23 2 0.89 2349.08
AE

Simplex 10425.339 | 1810 | 0.23 5 0.99 2341.26
CE Simplex | 10432.45 | 1810 | 7.34 5 0.20 2344 .81
E Simplex | 10473.31 | 1815 | 48.20 | 10 | <0.001 2357.31




Test for non-significant parameters
Run confidence intervals on all parameters

I AE Simplex Structure
Get neuro_f.mxs

Dr12 13 I C transmission coefficients
DR456 I C innovations
INX133

ENd



Matrix Element Int.  Estimate  Lower Upper Lfail Ufall
X 1 3 3950 0.8752 -1.7949 1.7949 02 02

I AE Simplex Structure, Remove final genetic innovation
Get neuro_f.mxs

Dr12 13 I C transmission coefficients
DR456 I C innovations
DR 3

ENd



Model Fitting Results

Model LL df | A2LL | Adf D BIC

ACE

Cholesky | 10424.88 | 1803 | - - - 2352.13

Full

Simplex ~ |10425.113| 1805 | 023 | 2 | 0.89 2349.08

AE Simplex | 10425.339 | 1810 | 0.23 | 5 | 0.99 2341.26
Dropl,, | 10425.70 | 1811 | 058 | 6 | 1.00 2339.85

CE Simplex | 10432.45 | 1810 | 7.34 | 5 | 0.20 2344.81

E Simplex | 10473.31 | 1815 | 48.20 | 10 | <0.001 | 2357.31




Best Fitting Model for Female
Neuroticism

A A Degree of genetic continuity
Age specific genetic effects

Genetic innovation at 14
years

s it related to developmental
or hormonal changes during
puberty and psychosexual
development?




Additional Longitudinal Models
Dual Qhange Score (DCS) Model for Ordinal Data

Squeezing Interval Change From Ordinal Panel Data: Latent Growth
Curves With Ordinal Outcomes

Paras D. Mehta Michael C. Neale

University of Ilinois at Chicago Virginia Commonwealth Univessity

Brian R. Flay

Univessity of Illineis at Chicago
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0.1
Tau Tﬁu
1 1

1 influences on self-reported availability of psychoactive
Yy - latent intercept, y, = rate of change, |1y, |, = latent intercept and slope means, 6y. 6, = latent intercept substances: alcohol. ci garettes, ma 1‘i_iua na.
and slope variances, pyp.= correlation }JeHW'eell intercept and sl_ope. =Ay[2-4] = latent dlfferf:nce scores, cocaine and stimulants
u,[1-4] = random error, « = systematic change. B = systematic proportional change. Also included are
definition variables (diamonds) to adjust the mean (triangle) intercept and slope for the linear and quadratic NATHAN A GILLESPIE™ KENNETH S KENDLER', CAROL A. PRESCOTT?,
. = . . STEVEN H AGGEN', CHARLES O GARDNER Jr', KRISTEN JACOBSON
effects of age at time of measurement. The sharp S-shaped single headed arrows represent the links anxp MICHAEL C. NEALE'

between the observed ordinal measures (squares) and their corresponding underlying latent variables
(circles).



Additional Longitudinal Models

Bivariate Dual Change Score (DCS) Model for
Ordinal Data o : o2










Best-fitting model for drinking

58
(.51 - .66)

71
(.63 - .79)

70
(.62 -.78) y
Age 16 Age 17 Age 18.5
Drinking Drinking Drinking
A
.61 37
(.53-.67) . (29 - 45) (.16 -.47)

@(.16 - 32)



Methods for Longitudinal Analysis

Cholesky Models
Simplex Models
Growth Curve Models



Simplex Model

A longitudinal study with 4 waves (single individual):
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(Boomsma & Molenaar, 1987)



Genetic Simplex Model

X11 X2 X33
O O Oy
BAC2 BAC3 BAC4 BAC6
U1 u22 U33</ U44</‘
1 |1 |1 "I
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x and z = genetic and nonshared environmental innovations respectively
n and p = genetic and nonshared environmental transmission respectively
U = error variances




Simplex Model

Advantages:

Makes restrictive predictions about covariance
pattern

Falsifiable



Genetic Simplex Modeling of Eysenck’s Dimensions

Female Extraversion Male Extraversion

A ,v ,v

=1

.08 .03 .01

Figure 2

Best fitting genetic simplex model for female and male extraversion.

E,, ; = extraversion 12-16 yrs

A, .. E_, C,_;= additive genetic and nonshared and shared environmental effects

Carar S Go1 = additive genetic innovations, nonshared and shared environmental innovations
€, , = error parameters 12-16 yrs

doublefsingle headed arrows = variance components/path coefficients



Female Neuroticism Male Neuroticism
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Figure 3

Bestfitting genetic simplex model for female and male neuroticism.

N,, s = neuroticism 12-16 yrs

A, ., E _,=additive genetic and nonshared environmental effects

G, 5,1 = dditive genetic innovations and nonshared environmental innovations
£, = error parameters 12-16 yrs

douhle/single headed arrows = variance components/path coefficients



Figure 3

Best fitting simplex model for female depression with unstandardized variance components and path coefficients.

Mota: G- G,=additive genatic effacts, E, - E, = non-shared amvironmental effects, t_'g= additive genatic innovations, tﬁ: non-shared environmental innavations, £ = error terms
{whera €, =£)



Today’'s example

Grant et al., 1999, Behavior Genetics, 29, 463-472.

Australian alcohol challenge data, collected between
1979 and 1981

Mean age = 23.5 years

Subjects drank 0.75 g/kg alcohol at a steady rate over a
20-minute period. Blood Alcohol Concentragop (BAC)

was assessed at 6 omts after consumpt;
P Minutes Mean PURviduals

post_ BAC with data
consump. MZM  DZM
(43 (37
prs)  prs)
BAC 1 56 89.0 83 72
BAC 2 68 88.9 83 74
BAC 3 83 88.8 84 71

BAC 4 123 80.9 36 74

— A N e 4 & o~ -— N A~ —~ —~



A simplex correlation pattern...

Sample correlations (the DZM twin A quadrant
of an intraclass correlation matrix)

BAC | BAC | BAC | BAC
2 3 4 6

BAC | 1.00

2

BAC | 0.90 | 1.00

3

BAC | 0.69 | 0.84 | 1.00

4




Practical - Simplex Model

X1

X2 X33
IO O OIS
BAC2 BAC3 BAC4 BAC6
Uy Uz (/‘ U33</ U44</‘
1 |1 |1 ‘1
S C O
Z11 Z; Z33 Z44</<

x and z = genetic and nonshared environmental innovations respectively
n and p = genetic and nonshared environmental transmission respectively
U = error variances




Practical - Simplex Model

X1

b

0200

BAC6
Ui U44</

0004 %

u

AC3
22 |
C@ P3o @) P43 S @
Zy1 é ; Z44</<

x and z = genetic and nonshared environmental innovations respectively
n and p = genetic and nonshared environmental transmission respectively

U = error variances




Practical - Simplex Model

.

BAC2 BAC3 BAC4 BACG6
G » (5 » (5 » (5
1 |1 |1
? <g 2 ( ; ? @) ? C/‘

x and z = genetic and nonshared environmental innovations respectively
n and p = genetic and nonshared environmental transmission respectively
U = error variances




Full Genetic Simplex Model

12.0279 6.5234 .7036 4.2649
O@ 0.9892 O@ 0.5332 O@ 1.3123 O@

BAC2 BAC3 BAC4 BACG6
-0.1840 0.1840 -0.1840 -0.1840 (/“
1

1 1

0.7001 @ 0.5027 @ 0.4130 @
9 4624 </ C/ </‘
5.0094 10.3650

5.1284

Basic_simplex.mxo -2*LL=4620.028, 23 est. parameters, 606 df



Sub-Models

Is the error variance on individual variable
assessments significant?

Is the genetic innovations on BACG6
significant? BAC47? BAC2?



Sub-Models

Is the error variance on individual variable
assessments significant?

- drop 200

Is the genetic innovations on BACG6
significant? BAC47? BAC2?

- drop 4, 3, 2



Simplex Model

Advantages:
Makes restrictive predictions about covariance
pattern

Falsifiable

Disadvantages:

Makes restrictive predictions about covariance
pattern (future depends on current state only)

Number of parameters increases with number of
measurements



Methods for Longitudinal Analysis

Cholesky Models
Simplex Models
Growth Curve Models



Latent Growth Curve Model

(shown here as linear)
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1.0/

Latent Growth Curve Model

(shown here as linear)
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Yii=a; + Bi(t — 1) + €y,

i=1,2 t=1,2,34



Genetically Informative
Latent Growth Curve Model
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A longitudinal study with 4 waves:
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Methods of quantitative genetics:
i =GaitEai=Aai+Dai + Cait+ Ea
Bi=Gpi+Egi =Agi+ Dpi + Cpit Epg,

fortwini =1, 2.

Where:

o (A, i, Ag ;) are the additive genetic components of intercept and slope

o (D, i, Dg;) are the respective dominant genetic components

o (C,.i,Cp,;) are the respective shared environmental components
(

E, i, Eg ;) are the respective non-shared environmental components

—Like a bivariate model



Growth Model Questions

What is the contribution of
genetic/environmental factors to the
variation of a (intercept) and 3 (slope)?

Same or different genes influencing a
(intercept) and B (slope)?

Same or different environments
influencing a (intercept) and B (slope)?



Practical

Mx latent growth curve example
(script from hitp://www.psy.vu.nl/mxbib/)

Submodels to test:
No covariance between slope and intercept
No genetic effect on intercept
No genetic effect on slope
No common environmental effect on intercept
No common environmental effect on slope
Best fitting model? (i.e., ACE, AE, CE, E?)



Time 4




Practical

Mx latent growth curve example
(script from hitp://www.psy.vu.nl/mxbib/)

Submodels to test:

No covariance between slope and intercept —
signif decrease in fit

_Nc;_genetic effect on intercept — signif decrease
:[\Eolgenetic effect on slope — signif decrease in

I\Ilo common environmental effect on intercept -
;\lrcl)scommon environmental effect on slope -- ns



Growth Curve Model

Advantages:

Very efficient: number of parameters does not
increase with number of measurements

Provides prediction about behavior beyond
measured timepoints

Disadvantages:
Note regarding slope parameters
Can be computationally intense

Assumptions to reduce computational burden

Linearity, no genetic effects on residuals, equal variance
among residuals at differing timepoints



Latent Growth Curve Modeling
Additional Considerations

Standard approach assumes data are
collected at identical set of fixed ages for
all individuals (e.g., start at age 12, yearly
assessments)

Age heterogeneity and unequal spacing of
measurements can be handled using
definition variables

Mehta & West, 2000, Psychological Methods



Latent Growth Curve Model with Measured Variable
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Extensions of Growth Curve Models

Incorporation of measured variables
(genotype, environment)

Nonlinear growth

Neale, MC & McArdle, JJ (2000). A structured
latent growth curves for twin data. Twin Research,

3, 165-17

Tirpe 1 Time 2 | Time 3 Tirpe 4




Latent Growth Curve Modeling

McArdle, JJ (1986). Latent variable growth within
behavior genetic models. Behavior Genetics, 16, 163-
200.

Baker, LA et al. (1992). Biometrical analysis of
individual growth curves. Behavior Genetics, 22, 253-
264.

McArdle, JJ et al. (1998). A contemporary

method for developmental -genetic analyses of age
changes in intellectual abilities. Developmental
Neuropsychology, 14, 69-114.




Summary of Longitudinal Models

Cholesky Model
Few assumptions, predict any pattern of correlations
Not falsifiable
Limited measurements

Simplex Model
Falsifiable
Limited measurements

Growth Curve Model
G, E influences on initial level, rate of change
Unlimited measurements
Computationally intensive, assumptions






