Multivariate Modeling

Nathan Gillespie & Irene Rebollo

Files: \\nathan\2008\ aggression.dat multi_aggr_2var.mx

Practica

- 1. Go thru Mx bivariate script with fine tooth comb
- 2. Estimate phenotypic correlations, genetic & environmental latent factor correlations, standardized proportions of variance
- 3. Test AE, CE and E submodels
- 4. Try your hand at writing a trivariate Cholesky

Bivariate Cholesky

- Folder: \nathan\2008
- Files: multi_aggr_2var.mx aggression.dat

Aggression Time 1: 3258 twins in 1991 Aggression Time 2: 3303 twins in 1995 Aggression Time 2: 2984 twins in 1997

Data need to be adjusted for age at interview

Additive genetic path coefficients (X)

Additive genetic path coefficients (Y)

Additive Genetic Cross-Twin Covariance (DZ)

Total Within-Twin Covariance

Using matrix addition, the total within-twin covariance for the phenotypes is defined as:

$$
\Sigma_P = \left[\begin{array}{cc} +c_{11}^2 + e_{11}^2 & +c_{11}c_{21} + e_{11}e_{21} \\ +c_{21}c_{11} + e_{11}e_{21} & +c_{21}^2 + e_{21}^2 + e_{21}^2 + e_{22}^2 \end{array}\right]
$$

Age effects on mean

Means $M + B^*O \mid M + B^*P$; 1 by 4 matrix

Recall that:

M Full 1 nvar FreeB Full 1 ndef FreeO full ndef nvar fixP full ndef nvar fix

```
 ! grand mean phenotypes [1 2]
! Age beta [1 1]
! Age for twin 1 at times 1 & 2 [1 2]
! Age for twin 2 at times 1 & 2 [1 2]
```
B*O =
$$
[1 \ 1]^*
$$
 [1 2]
\n= $[B_{age}]^*$ [age1.1 x age3.1]
\n= $[B_{age} \times age1.1$ B_{age}x age3.1]
\nB*P = $[1 \ 1]^*$ [1 2]
\n= $[B_{age}]^*$ [age1.2 x age3.2]
\n= $[B_{age} \times age1.2$ B_{age}x age3.2]

Age effects on mean Means $M + B^*O$ | $M + B^*P$; 1 by 4 matrix $M + B^*O =$ $[\mu_{\text{twin1var1}} + B_{\text{age}} \times \text{age1.1} \quad \mu_{\text{twin1var2}} + B_{\text{age}} \times \text{age3.1}]$ $M + B^*P =$ $[\mu_{\text{twin2var1}} + B_{\text{age}} \times \text{age1.2} \quad \mu_{\text{twin2var2}} + B_{\text{age}} \times \text{age3.2}]$

Predicted Model

Estimating genetic and environmental correlations

Observed phenotypic correlation is the result of correlation at

- Genetic level
- Common environmental level
- Unique environmental level

Estimate r_g, r_c, and r_e

Estimate contribution of $\mathsf{r}_{\mathsf{g}},\,\mathsf{r}_{\mathsf{c}},\,$ and $r_{\rm e}$ to phenotypic correlation between phenotype 1 and 2

Correlations between latent factors

$$
r_{12} = \frac{\sigma_{12}^2}{\sqrt{\sigma_{11}^2 \times \sigma_{22}^2}} = \frac{1}{\sqrt{\sigma_{11}^2}} * \sigma_{12}^2 * \frac{1}{\sqrt{\sigma_{22}^2}}
$$

$$
\begin{bmatrix} 1 & r_G \ r_G & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{\sigma_{A_{11}}^2}} & 0 \\ 0 & \frac{1}{\sqrt{\sigma_{A_{22}}^2}} \end{bmatrix} * \begin{bmatrix} \frac{\sigma_{A_{11}}^2}{\sigma_{A_{21}}^2} & \frac{\sigma_{A_{12}}^2}{\sigma_{A_{22}}^2} \end{bmatrix} * \begin{bmatrix} \frac{1}{\sqrt{\sigma_{A_{11}}^2}} & 0 \\ 0 & \frac{1}{\sqrt{\sigma_{A_{22}}^2}} \end{bmatrix}
$$

Matrix function in Mx:

R = \sqrt (**I**.**A**) **˜** * **A** * \sqrt (**I**.**A**) ˜; Where **I** is an identity matrix: $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and **I**.**A** =

R = \stnd (**A**);

Proportion of observed phenotypic correlation explained by A, C and E

- Begin algebra;
	- \mathbf{K} = $\mathbf{A}\$ \mathbf{P} $\mathbf{C}\$ \mathbf{P} $\mathbf{E}\$ \mathbf{P} \mathbf{E}
	- $S = A\% (A+C+E) | C\% (A+C+E) | E\% (A+C+E)$;

End algebra;

% is the Mx operator for element division

Run ACE Model

ACE Model Fit

Model comparisons

Write trivariate ACE Model

Change **nvar** Include starting values for 3rd variables Change **Select** statement to include 3rd variable Change **Definition** statement 3rd variable ages

ACE Model Fit

Mx scripts

http://www.psy.vu.nl/mxbib

 $\mu^2 = \sqrt{e^2 * r} * \sqrt{e^2}$, $e_{x,y} = \sqrt{e_x + r_e} \cdot \sqrt{e_y}$

Genetic contribution to observed correlation (h^2_{xy}) is a function of rg and both heritabilities

Observed correlation

$$
r = \sqrt{h_x^2} * r_g * \sqrt{h_y^2}
$$

$$
+ \sqrt{c_x^2} * r_c * \sqrt{c_y^2}
$$

$$
+\sqrt{e_x^2 * r_e * \sqrt{e_y^2}}
$$

Observed correlation and contributions from A, C and E $2 * 12$ *x* * *g* * $*\sqrt{h'_y}$ h^2 * r $r=% {\textstyle\int\nolimits_{-\infty}^{+\infty}} dt~g$ $2 *_{\bf r} * |_{\bf r}^2$ \ast *xcy y* $+$ \sqrt{c} ^x $\frac{\pi}{c}$ \sqrt{c} $2 *_{\bf r} * |_{\bf o}^2$ \ast *xey* $+$ $\sqrt{e^2 * r^2}$ $.05*1.00*\sqrt{.00} = 0.01$ $.54=$ = $+\,$ $\sqrt{.28}$ * $*0.79*$ * $\sqrt{0.29} = 0.22$ $+\sqrt{.67}$ $*$ 0.44 $*$ $*$ $\sqrt{0.71}$ $= 0.31$

Proportion of the observed correlation (or covariance) explained by correlation at the genetic level: 0.01/0.54 = 0.02

Proportion of the observed correlation (or covariance) explained by correlation at the shared environmental level: 0.22/0.54 = 0.41

Proportion of the observed correlation (or covariance) explained by correlation at the non-shared environmental level: $0.31/0.54 = 0.57$