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@ these are the differences we are interested in when Multi-group CFA
. Theory of MI
comparing groups! e

@ recall, the latent variables represent the theoretical

constructs i

o if groups don't differ with respect to intercepts,
loadings, and residual variances, then observed scores
are not biased, and factor mean and (co)variance
differences can be investigated
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@ the distribution of the observed variable Y given the UL
latent variables 1 and a grouping variable s equals the
distribution of the observed variable Y given the latent
variables 1 alone o

e in other words, the distribution of Y conditional on the
latent variables does not differ across groups

@ since the definition concerns the distribution of Y

conditional on 7, the distribution of 7 may differ across
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@ Y is assumed to be normally distributed
o therefore means and covariance matrix of Y are
sufficient statistics

@ we impose the CFA model on the means and covariance
matrix of Y in each group

Theory of MI

E(Yg) = vg+NE(ag)
Cov(Yg) = I\glllgl\/ngOg

@ parameters that need to be equal across groups are
e intercepts v, loadings A, residual variances ©

@ this confirms our more conceptual prior considerations
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@ three consecutive tests using model comparisons
o the three tests correspond to testing invariance of
loadings, intercepts, and residual variances
@ starting with the most lenient multi-group model (M),
a series of four increasingly restrictive models can be
fitted (Ml-M4)
o each of the three tests compare model M, to the more
lenient model M, _; using a likelihood ratio test

Testing M|

o if the more constrained model is tenable, the next model
in the series is fitted and compared to the previous model
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e Msy: loadings are fixed to be equal across groups, the LRV
. . IRT
rest remains as in M;

e Mjz intercepts are fixed to be equal across groups, factor
means are fixed to zero in one group and estimated in
all other groups, rest as in M,

o My, residual variances are fixed to be equal across
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@ more common: categorlcal outcomes Theory of M
. . . Testing Ml
o binary outcomes: endorsing a symptom, checklists
o Likert data
. LRV
@ two approaches to model categorical data IRT

o latent response variable (or Y*) approach (LRV)
e item response theory approach

@ the two approaches are equivalent for proportional odds
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o the probability P(Y =1) = P(Y* > 1) is modeled
directly
@ rather than using linear regression to relate Y* to the
underlying factor, IRT uses logistic regression to model
the probabilities
o predicted value of a linear regression ranges from —co to oo
o logistic regression stays between 0 and 1
e convenient when modeling probabilities
@ the equation for a 2-p IRT model for binary data is U

1

P(Y =1/0) = 1+ exp[—b(n — a)]

@ ais the discrimination parameter
o b is the difficulty parameter
@ parameters a and b are related to thresholds, loadings,
and residual variances of the LRV model
o see Webnote 4, Muthen & Asparouhov, www.statmodel.com

Lubke, Rebollo (ND, VU) Ml in CFA and IRT models TW Boulder 2008 34 / 36



I
Group differences in P(Y|n)

Lubke, Rebollo

Comparing groups
Latent Variable
Models

Multi-group CFA
Theory of MI
Testing Ml

group 3: difficulty non—invariant

LRV
IRT

P(Y | n) group 1
- group 2: discrimination non-invariant
I T T T T T 1
latent variable n
Lubke, R MI in CFA and IRT models TW Boulder 2008 35 /36




Summary
Lubke, Rebollo

@ Latent variable models structure the relations between
observed variables and underlying latent variables Sempiln: e

Latent Variable
Models

@ the latent variables represent the theoretical constructs
Multi-group CFA

Theory of MI
Testing MI

LRV
IRT

Lubke, Rebollo (ND, VU) Ml in CFA and IRT models TW Boulder 2008 36 / 36



Summary

Lubke, Rebollo

@ Latent variable models structure the relations between
observed variables and underlying latent variables Sempiln: e

Latent Variable
Models

@ the latent variables represent the theoretical constructs

Multi-group CFA

@ group comparisons with respect to the latent variables is Thears o
possible iff measurement invariance holds Testing MI

LRV
IRT

Lubke, Rebollo (ND, VU) Ml in CFA and IRT models TW Boulder 2008 36 / 36



Summary
Lubke, Rebollo

@ Latent variable models structure the relations between
observed variables and underlying latent variables Sempiln: e

Latent Variable
Models

@ the latent variables represent the theoretical constructs

Multi-group CFA

@ group comparisons with respect to the latent variables is e

possible iff measurement invariance holds e
@ MI can be easily tested for continuous data and IRT
LRV
e a bit more thought needed in case of LRV approach IRT

Lubke, Rebollo (ND, VU) Ml in CFA and IRT models TW Boulder 2008 36 / 36



Summary

@ Latent variable models structure the relations between
observed variables and underlying latent variables
@ the latent variables represent the theoretical constructs
@ group comparisons with respect to the latent variables is
possible iff measurement invariance holds
@ MI can be easily tested for continuous data and IRT
e a bit more thought needed in case of LRV approach

@ tests do not depend on the type of measurement model

Lubke, Rebollo

Comparing groups
Latent Variable
Models

Multi-group CFA
Theory of MI
Testing MI

LRV
IRT

Lubke, Rebollo (ND, VU) Ml in CFA and IRT models TW Boulder 2008 36 / 36



Summary

@ Latent variable models structure the relations between
observed variables and underlying latent variables

@ the latent variables represent the theoretical constructs
@ group comparisons with respect to the latent variables is
possible iff measurement invariance holds
@ MI can be easily tested for continuous data and IRT
e a bit more thought needed in case of LRV approach

@ tests do not depend on the type of measurement model

@ Outlook
@ extension to genetic decomposition models (ACE type) is
straightforward
o either decompose the factors 17 (common pathway model)
o or decompose all observed variables Y (independent pathway
model)
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