** Mx startup successful ** **MX-PC 1.66b** Job started on 03/05/08 at 15:43:04 ! MULTIVARIATE CHOLESKY ACE MODEL ! NL IQ DATA The following MX script lines were read for group 1 #NGROUPS 4 Note: #NGroup set number of groups to 4 #DEFINE NVAR 6 G1: DEFINE MATRICES CALCULATION BEGIN MATRICES; X LOWER NVAR NVAR FREE ! CHOLESKY OF GENETIC PATH COEFFICIENTS Y LOWER NVAR NVAR !FREE ! CHOLESKY OF SHARED ENVIRONMENT PATH COEFFICIENTS Z LOWER NVAR NVAR FREE ! CHOLEKSY OF UNIQUE ENVIRONMENT PATH COEFFICIENTS M FULL 1 NVAR FREE ! MEANS END MATRICES; START 7 M 1 1 - M 1 NVAR START 10 Z 1 1 1 Z 1 2 2 Z 1 3 3 Z 1 4 4 Z 1 5 5 Z 1 6 6 BEGIN ALGEBRA; A= X*X'; ! ADDITIVE GENETIC VARIANCE COMPONENTS C= Y*Y'; ! SHARED ENVIRONMENT VARIANCE COMPONENTS E= Z*Z'; ! NONSHARED ENVIRONMENT VARIANCE COMPONENTS END ALGEBRA; OPTION NO_OUTPUT END The following MX script lines were read for group 2 G2: MZ TWINS #INCLUDE IQNLMZ2.DAT Note: Opening #include file 1 iqnlmz2.dat DATA NINPUTVARS=18 RECTANGULAR FILE=IQNL2.REC Rectangular continuous data read initiated Note: Maximum ordinal/rectangular record length is: 1000 Note: It be increased by maxrec= parameter on the data line. NOTE: Rectangular file contained 101 records with data that contained a total of 1566 observations LABELS FAMID ZYGOS AGE_T1 SEX_T1 VAR1_T1 VAR2_T1 VAR3_T1 VAR4_T1 VAR5_T1 VAR6_T1 AGE_T2 SEX_T2 VAR1_T2 VAR2_T2 VAR3_T2 VAR4_T2 VAR5_T2 VAR6_T2 SELECT IF ZYGOS < 3 ; !SELECT MZ'S NOTE: Select if yields 28 data vectors for analysis NOTE: Vectors contain a total of 432 observations SELECT VAR1_T1 VAR2_T1 VAR3_T1 VAR4_T1 VAR5_T1 VAR6_T1 VAR1_T2 VAR2_T2 VAR3_T2 VAR4_T2 VAR5_T2 VAR6_T2 ; Note: Closing #include file 1 !-------------------- FILE TO INCLUDE ---------------------------- ! DATA NINPUTVARS=18 ! RECTANGULAR FILE=IQNL2.REC ! LABELS FAMID ZYGOS ! AGE_T1 SEX_T1 VAR1_T1 VAR2_T1 VAR3_T1 VAR4_T1 VAR5_T1 VAR6_T1 ! AGE_T2 SEX_T2 VAR1_T2 VAR2_T2 VAR3_T2 VAR4_T2 VAR5_T2 VAR6_T2 ! SELECT IF ZYGOS < 3 ; !SELECT DZ'S ! SELECT ! VAR1_T1 VAR2_T1 VAR3_T1 VAR4_T1 VAR5_T1 VAR6_T1 ! VAR1_T2 VAR2_T2 VAR3_T2 VAR4_T2 VAR5_T2 VAR6_T2 ; !----------------------------------------------------------------- BEGIN MATRICES = GROUP 1; NOTE: Selection yields 26 data vectors for analysis NOTE: Vectors contain a total of 264 observations MEANS M | M ; COVARIANCE A+C+E | A+C _ A+C | A+C+E ; OPTION RSIDUALS END The following MX script lines were read for group 3 G3: DZ TWINS #INCLUDE IQNLDZ2.DAT Note: Opening #include file 1 iqnldz2.dat DATA NINPUTVARS=18 RECTANGULAR FILE=IQNL2.REC Rectangular continuous data read initiated Note: Maximum ordinal/rectangular record length is: 1000 Note: It be increased by maxrec= parameter on the data line. NOTE: Rectangular file contained 101 records with data that contained a total of 1566 observations LABELS FAMID ZYGOS AGE_T1 SEX_T1 VAR1_T1 VAR2_T1 VAR3_T1 VAR4_T1 VAR5_T1 VAR6_T1 AGE_T2 SEX_T2 VAR1_T2 VAR2_T2 VAR3_T2 VAR4_T2 VAR5_T2 VAR6_T2 SELECT IF ZYGOS > 2 ; !SELECT DZ'S NOTE: Select if yields 73 data vectors for analysis NOTE: Vectors contain a total of 1134 observations SELECT VAR1_T1 VAR2_T1 VAR3_T1 VAR4_T1 VAR5_T1 VAR6_T1 VAR1_T2 VAR2_T2 VAR3_T2 VAR4_T2 VAR5_T2 VAR6_T2 ; Note: Closing #include file 1 BEGIN MATRICES= GROUP 1; NOTE: Selection yields 70 data vectors for analysis NOTE: Vectors contain a total of 696 observations H FULL 1 1 END MATRICES; MATRIX H .5 MEANS M | M ; COVARIANCE A+C+E | H@A+C _ H@A+C | A+C+E ; OPTION RSIDUALS END The following MX script lines were read for group 4 G4: CALCULATE STANDARDISED SOLUTION CALCULATION MATRICES = GROUP 1 I IDEN NVAR NVAR END MATRICES; BEGIN ALGEBRA; R=A+C+E; ! TOTAL VARIANCE S=(\SQRT(I.R))~; ! DIAGONAL MATRIX OF STANDARD DEVIATIONS P=S*X_ S*Y_ S*Z; ! STANDARDIZED ESTIMATES FOR COMMON FACTORS END ALGEBRA; LABELS ROW P A1 A2 A3 A4 A5 A6 C1 C2 C3 C4 C5 C6 E1 E2 E3 E4 E5 E6 LABELS COL P VAR1 VAR2 VAR3 VAR4 VAR5 VAR6 OPTIONS NDECIMALS=4 OPTION SAT= 2656.321, 780 END Summary of VL file data for group 2 VAR1_T1 VAR2_T1 VAR3_T1 VAR4_T1 VAR5_T1 VAR6_T1 VAR1_T2 Code 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 Number 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 24.0000 Mean 8.8000 6.3553 8.3611 8.7224 6.6219 8.4210 8.8333 Variance 0.7360 2.3720 3.5331 1.8854 1.9945 4.5428 0.5456 Minimum 6.4000 3.4210 3.8890 5.5560 4.3900 3.6840 6.8000 Maximum 10.0000 9.3420 10.0000 10.0000 10.0000 10.0000 9.6000 VAR2_T2 VAR3_T2 VAR4_T2 VAR5_T2 VAR6_T2 Code 8.0000 9.0000 10.0000 11.0000 12.0000 Number 24.0000 24.0000 24.0000 24.0000 24.0000 Mean 6.5406 8.4491 9.0742 6.9512 8.0263 Variance 1.9801 3.8575 1.4058 1.8393 5.9385 Minimum 2.7630 3.8890 5.5560 3.9020 2.6320 Maximum 9.6050 10.0000 10.0000 9.5120 10.0000 Summary of VL file data for group 3 VAR1_T1 VAR2_T1 VAR3_T1 VAR4_T1 VAR5_T1 VAR6_T1 VAR1_T2 Code 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 Number 58.0000 58.0000 58.0000 58.0000 58.0000 58.0000 58.0000 Mean 8.5103 6.5426 8.1706 8.9273 7.1783 8.1897 8.7241 Variance 0.4954 2.0112 3.0542 1.1052 1.1553 3.8068 0.7749 Minimum 6.4000 3.1580 2.7780 5.5560 4.3900 2.1050 4.0000 Maximum 9.6000 8.9470 10.0000 10.0000 9.2680 10.0000 10.0000 VAR2_T2 VAR3_T2 VAR4_T2 VAR5_T2 VAR6_T2 Code 8.0000 9.0000 10.0000 11.0000 12.0000 Number 58.0000 58.0000 58.0000 58.0000 58.0000 Mean 6.5994 8.0364 8.8507 6.9386 7.6180 Variance 1.2279 3.3653 1.1477 0.9543 5.2258 Minimum 4.2110 2.7780 5.5560 3.6590 2.6320 Maximum 8.5530 10.0000 10.0000 8.5370 10.0000 PARAMETER SPECIFICATIONS GROUP NUMBER: 2 G2: MZ twins MATRIX A This is a computed FULL matrix of order 6 by 6 It has no free parameters specified MATRIX C This is a computed FULL matrix of order 6 by 6 It has no free parameters specified MATRIX E This is a computed FULL matrix of order 6 by 6 It has no free parameters specified MATRIX M This is a FULL matrix of order 1 by 6 1 2 3 4 5 6 1 43 44 45 46 47 48 MATRIX X This is a LOWER TRIANGULAR matrix of order 6 by 6 1 2 3 4 5 6 1 1 2 2 3 3 4 5 6 4 7 8 9 10 5 11 12 13 14 15 6 16 17 18 19 20 21 MATRIX Y This is a LOWER TRIANGULAR matrix of order 6 by 6 It has no free parameters specified MATRIX Z This is a LOWER TRIANGULAR matrix of order 6 by 6 1 2 3 4 5 6 1 22 2 23 24 3 25 26 27 4 28 29 30 31 5 32 33 34 35 36 6 37 38 39 40 41 42 GROUP NUMBER: 3 G3: DZ twins MATRIX A This is a computed FULL matrix of order 6 by 6 It has no free parameters specified MATRIX C This is a computed FULL matrix of order 6 by 6 It has no free parameters specified MATRIX E This is a computed FULL matrix of order 6 by 6 It has no free parameters specified MATRIX H This is a FULL matrix of order 1 by 1 It has no free parameters specified MATRIX M This is a FULL matrix of order 1 by 6 1 2 3 4 5 6 1 43 44 45 46 47 48 MATRIX X This is a LOWER TRIANGULAR matrix of order 6 by 6 1 2 3 4 5 6 1 1 2 2 3 3 4 5 6 4 7 8 9 10 5 11 12 13 14 15 6 16 17 18 19 20 21 MATRIX Y This is a LOWER TRIANGULAR matrix of order 6 by 6 It has no free parameters specified MATRIX Z This is a LOWER TRIANGULAR matrix of order 6 by 6 1 2 3 4 5 6 1 22 2 23 24 3 25 26 27 4 28 29 30 31 5 32 33 34 35 36 6 37 38 39 40 41 42 GROUP NUMBER: 4 G4: Calculate Standardised Solution MATRIX A This is a computed FULL matrix of order 6 by 6 It has no free parameters specified MATRIX C This is a computed FULL matrix of order 6 by 6 It has no free parameters specified MATRIX E This is a computed FULL matrix of order 6 by 6 It has no free parameters specified MATRIX I This is an IDENTITY matrix of order 6 by 6 MATRIX M This is a FULL matrix of order 1 by 6 1 2 3 4 5 6 1 43 44 45 46 47 48 MATRIX P This is a computed FULL matrix of order 18 by 6 It has no free parameters specified MATRIX R This is a computed FULL matrix of order 6 by 6 It has no free parameters specified MATRIX S This is a computed FULL matrix of order 6 by 6 It has no free parameters specified MATRIX X This is a LOWER TRIANGULAR matrix of order 6 by 6 1 2 3 4 5 6 1 1 2 2 3 3 4 5 6 4 7 8 9 10 5 11 12 13 14 15 6 16 17 18 19 20 21 MATRIX Y This is a LOWER TRIANGULAR matrix of order 6 by 6 It has no free parameters specified MATRIX Z This is a LOWER TRIANGULAR matrix of order 6 by 6 1 2 3 4 5 6 1 22 2 23 24 3 25 26 27 4 28 29 30 31 5 32 33 34 35 36 6 37 38 39 40 41 42 Mx starting optimization; number of parameters = 48 *** WARNING! *** I am not sure I have found a solution that satisfies Kuhn-Tucker conditions for a minimum. NAG's IFAIL parameter is 1 We probably have a minimum here, but you might consider trying different starting values. You can randomize these with TH=n on the OU line, where n is the number of times you wish to do this. I STRONGLY recommend BOundaries to be set if you use TH MX PARAMETER ESTIMATES GROUP NUMBER: 2 G2: MZ twins MATRIX A This is a computed FULL matrix of order 6 by 6 [=X*X'] 1 2 3 4 5 6 1 0.5007 0.0365 0.1366 0.2440 0.2344 0.4804 2 0.0365 1.5277 0.3108 0.1004 0.8663 0.8345 3 0.1366 0.3108 1.5520 1.0088 0.0644 1.1358 4 0.2440 0.1004 1.0088 0.7132 0.0514 0.7737 5 0.2344 0.8663 0.0644 0.0514 0.7921 0.7793 6 0.4804 0.8345 1.1358 0.7737 0.7793 4.4311 MATRIX C This is a computed FULL matrix of order 6 by 6 [=Y*Y'] 1 2 3 4 5 6 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 MATRIX E This is a computed FULL matrix of order 6 by 6 [=Z*Z'] 1 2 3 4 5 6 1 0.1718 0.0909 0.0492 -0.0803 0.0342 0.0902 2 0.0909 0.2873 0.1148 -0.0079 0.0486 -0.0391 3 0.0492 0.1148 1.8446 0.5761 -0.0241 0.0599 4 -0.0803 -0.0079 0.5761 0.5729 0.0007 0.0238 5 0.0342 0.0486 -0.0241 0.0007 0.4792 0.0757 6 0.0902 -0.0391 0.0599 0.0238 0.0757 0.4727 MATRIX M This is a FULL matrix of order 1 by 6 1 2 3 4 5 6 1 8.6594 6.5225 8.1490 8.8690 6.9745 7.9138 MATRIX X This is a LOWER TRIANGULAR matrix of order 6 by 6 1 2 3 4 5 6 1 -0.7076 2 -0.0515 -1.2349 3 -0.1931 -0.2436 -1.2064 4 -0.3449 -0.0669 -0.7676 -0.0245 5 -0.3313 -0.6877 0.1385 0.1046 -0.4235 6 -0.6789 -0.6474 -0.7021 1.7423 -0.0571 0.1389 MATRIX Y This is a LOWER TRIANGULAR matrix of order 6 by 6 1 2 3 4 5 6 1 0.0000 2 0.0000 0.0000 3 0.0000 0.0000 0.0000 4 0.0000 0.0000 0.0000 0.0000 5 0.0000 0.0000 0.0000 0.0000 0.0000 6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 MATRIX Z This is a LOWER TRIANGULAR matrix of order 6 by 6 1 2 3 4 5 6 1 -0.4145 2 -0.2194 -0.4890 3 -0.1186 -0.1816 -1.3407 4 0.1937 -0.0708 -0.4373 -0.5824 5 -0.0824 -0.0623 0.0337 -0.0465 -0.6821 6 -0.2175 0.1776 -0.0495 -0.0976 -0.0967 -0.6103 Vector of OBSERVED means VAR1_T1 VAR2_T1 VAR3_T1 VAR4_T1 VAR5_T1 VAR6_T1 VAR1_T2 Mean 8.8000 6.3553 8.3611 8.7224 6.6219 8.4210 8.8333 VAR2_T2 VAR3_T2 VAR4_T2 VAR5_T2 VAR6_T2 Mean 6.5406 8.4491 9.0742 6.9512 8.0263 Vector of EXPECTED means VAR1_T1 VAR2_T1 VAR3_T1 VAR4_T1 VAR5_T1 VAR6_T1 VAR1_T2 Mean 8.6594 6.5225 8.1490 8.8690 6.9745 7.9138 8.6594 VAR2_T2 VAR3_T2 VAR4_T2 VAR5_T2 VAR6_T2 Mean 6.5225 8.1490 8.8690 6.9745 7.9138 (OBSERVED MATRIX is nonexistent for raw data) EXPECTED COVARIANCE MATRIX VAR1_T1 VAR2_T1 VAR3_T1 VAR4_T1 VAR5_T1 VAR6_T1 VAR1_T2 VAR1_T1 0.6726 VAR2_T1 0.1274 1.8150 VAR3_T1 0.1858 0.4256 3.3965 VAR4_T1 0.1637 0.0925 1.5850 1.2860 VAR5_T1 0.2686 0.9149 0.0402 0.0521 1.2713 VAR6_T1 0.5706 0.7954 1.1957 0.7975 0.8550 4.9038 VAR1_T2 0.5007 0.0365 0.1366 0.2440 0.2344 0.4804 0.6726 VAR2_T2 0.0365 1.5277 0.3108 0.1004 0.8663 0.8345 0.1274 VAR3_T2 0.1366 0.3108 1.5520 1.0088 0.0644 1.1358 0.1858 VAR4_T2 0.2440 0.1004 1.0088 0.7132 0.0514 0.7737 0.1637 VAR5_T2 0.2344 0.8663 0.0644 0.0514 0.7921 0.7793 0.2686 VAR6_T2 0.4804 0.8345 1.1358 0.7737 0.7793 4.4311 0.5706 VAR2_T2 VAR3_T2 VAR4_T2 VAR5_T2 VAR6_T2 VAR1_T1 VAR2_T1 VAR3_T1 VAR4_T1 VAR5_T1 VAR6_T1 VAR1_T2 VAR2_T2 1.8150 VAR3_T2 0.4256 3.3965 VAR4_T2 0.0925 1.5850 1.2860 VAR5_T2 0.9149 0.0402 0.0521 1.2713 VAR6_T2 0.7954 1.1957 0.7975 0.8550 4.9038 Function value of this group: 748.8694 Where the fit function is -2 * Log-likelihood of raw data GROUP NUMBER: 3 G3: DZ twins MATRIX A This is a computed FULL matrix of order 6 by 6 [=X*X'] 1 2 3 4 5 6 1 0.5007 0.0365 0.1366 0.2440 0.2344 0.4804 2 0.0365 1.5277 0.3108 0.1004 0.8663 0.8345 3 0.1366 0.3108 1.5520 1.0088 0.0644 1.1358 4 0.2440 0.1004 1.0088 0.7132 0.0514 0.7737 5 0.2344 0.8663 0.0644 0.0514 0.7921 0.7793 6 0.4804 0.8345 1.1358 0.7737 0.7793 4.4311 MATRIX C This is a computed FULL matrix of order 6 by 6 [=Y*Y'] 1 2 3 4 5 6 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 MATRIX E This is a computed FULL matrix of order 6 by 6 [=Z*Z'] 1 2 3 4 5 6 1 0.1718 0.0909 0.0492 -0.0803 0.0342 0.0902 2 0.0909 0.2873 0.1148 -0.0079 0.0486 -0.0391 3 0.0492 0.1148 1.8446 0.5761 -0.0241 0.0599 4 -0.0803 -0.0079 0.5761 0.5729 0.0007 0.0238 5 0.0342 0.0486 -0.0241 0.0007 0.4792 0.0757 6 0.0902 -0.0391 0.0599 0.0238 0.0757 0.4727 MATRIX H This is a FULL matrix of order 1 by 1 1 1 0.5000 MATRIX M This is a FULL matrix of order 1 by 6 1 2 3 4 5 6 1 8.6594 6.5225 8.1490 8.8690 6.9745 7.9138 MATRIX X This is a LOWER TRIANGULAR matrix of order 6 by 6 1 2 3 4 5 6 1 -0.7076 2 -0.0515 -1.2349 3 -0.1931 -0.2436 -1.2064 4 -0.3449 -0.0669 -0.7676 -0.0245 5 -0.3313 -0.6877 0.1385 0.1046 -0.4235 6 -0.6789 -0.6474 -0.7021 1.7423 -0.0571 0.1389 MATRIX Y This is a LOWER TRIANGULAR matrix of order 6 by 6 1 2 3 4 5 6 1 0.0000 2 0.0000 0.0000 3 0.0000 0.0000 0.0000 4 0.0000 0.0000 0.0000 0.0000 5 0.0000 0.0000 0.0000 0.0000 0.0000 6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 MATRIX Z This is a LOWER TRIANGULAR matrix of order 6 by 6 1 2 3 4 5 6 1 -0.4145 2 -0.2194 -0.4890 3 -0.1186 -0.1816 -1.3407 4 0.1937 -0.0708 -0.4373 -0.5824 5 -0.0824 -0.0623 0.0337 -0.0465 -0.6821 6 -0.2175 0.1776 -0.0495 -0.0976 -0.0967 -0.6103 Vector of OBSERVED means VAR1_T1 VAR2_T1 VAR3_T1 VAR4_T1 VAR5_T1 VAR6_T1 VAR1_T2 Mean 8.5103 6.5426 8.1706 8.9273 7.1783 8.1897 8.7241 VAR2_T2 VAR3_T2 VAR4_T2 VAR5_T2 VAR6_T2 Mean 6.5994 8.0364 8.8507 6.9386 7.6180 Vector of EXPECTED means VAR1_T1 VAR2_T1 VAR3_T1 VAR4_T1 VAR5_T1 VAR6_T1 VAR1_T2 Mean 8.6594 6.5225 8.1490 8.8690 6.9745 7.9138 8.6594 VAR2_T2 VAR3_T2 VAR4_T2 VAR5_T2 VAR6_T2 Mean 6.5225 8.1490 8.8690 6.9745 7.9138 (OBSERVED MATRIX is nonexistent for raw data) EXPECTED COVARIANCE MATRIX VAR1_T1 VAR2_T1 VAR3_T1 VAR4_T1 VAR5_T1 VAR6_T1 VAR1_T2 VAR1_T1 0.6726 VAR2_T1 0.1274 1.8150 VAR3_T1 0.1858 0.4256 3.3965 VAR4_T1 0.1637 0.0925 1.5850 1.2860 VAR5_T1 0.2686 0.9149 0.0402 0.0521 1.2713 VAR6_T1 0.5706 0.7954 1.1957 0.7975 0.8550 4.9038 VAR1_T2 0.2504 0.0182 0.0683 0.1220 0.1172 0.2402 0.6726 VAR2_T2 0.0182 0.7639 0.1554 0.0502 0.4332 0.4173 0.1274 VAR3_T2 0.0683 0.1554 0.7760 0.5044 0.0322 0.5679 0.1858 VAR4_T2 0.1220 0.0502 0.5044 0.3566 0.0257 0.3869 0.1637 VAR5_T2 0.1172 0.4332 0.0322 0.0257 0.3961 0.3897 0.2686 VAR6_T2 0.2402 0.4173 0.5679 0.3869 0.3897 2.2155 0.5706 VAR2_T2 VAR3_T2 VAR4_T2 VAR5_T2 VAR6_T2 VAR1_T1 VAR2_T1 VAR3_T1 VAR4_T1 VAR5_T1 VAR6_T1 VAR1_T2 VAR2_T2 1.8150 VAR3_T2 0.4256 3.3965 VAR4_T2 0.0925 1.5850 1.2860 VAR5_T2 0.9149 0.0402 0.0521 1.2713 VAR6_T2 0.7954 1.1957 0.7975 0.8550 4.9038 Function value of this group: 2133.2280 Where the fit function is -2 * Log-likelihood of raw data GROUP NUMBER: 4 G4: Calculate Standardised Solution MATRIX A This is a computed FULL matrix of order 6 by 6 [=X*X'] 1 2 3 4 5 6 1 0.5007 0.0365 0.1366 0.2440 0.2344 0.4804 2 0.0365 1.5277 0.3108 0.1004 0.8663 0.8345 3 0.1366 0.3108 1.5520 1.0088 0.0644 1.1358 4 0.2440 0.1004 1.0088 0.7132 0.0514 0.7737 5 0.2344 0.8663 0.0644 0.0514 0.7921 0.7793 6 0.4804 0.8345 1.1358 0.7737 0.7793 4.4311 MATRIX C This is a computed FULL matrix of order 6 by 6 [=Y*Y'] 1 2 3 4 5 6 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 MATRIX E This is a computed FULL matrix of order 6 by 6 [=Z*Z'] 1 2 3 4 5 6 1 0.1718 0.0909 0.0492 -0.0803 0.0342 0.0902 2 0.0909 0.2873 0.1148 -0.0079 0.0486 -0.0391 3 0.0492 0.1148 1.8446 0.5761 -0.0241 0.0599 4 -0.0803 -0.0079 0.5761 0.5729 0.0007 0.0238 5 0.0342 0.0486 -0.0241 0.0007 0.4792 0.0757 6 0.0902 -0.0391 0.0599 0.0238 0.0757 0.4727 MATRIX I This is an IDENTITY matrix of order 6 by 6 MATRIX M This is a FULL matrix of order 1 by 6 1 2 3 4 5 6 1 8.6594 6.5225 8.1490 8.8690 6.9745 7.9138 MATRIX P This is a computed FULL matrix of order 18 by 6 [=S*X_S*Y_S*Z] VAR1 VAR2 VAR3 VAR4 VAR5 VAR6 A1 -0.8628 0.0000 0.0000 0.0000 0.0000 0.0000 A2 -0.0383 -0.9167 0.0000 0.0000 0.0000 0.0000 A3 -0.1048 -0.1322 -0.6546 0.0000 0.0000 0.0000 A4 -0.3041 -0.0590 -0.6768 -0.0216 0.0000 0.0000 A5 -0.2938 -0.6099 0.1229 0.0928 -0.3756 0.0000 A6 -0.3066 -0.2924 -0.3171 0.7868 -0.0258 0.0627 C1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 C2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 C3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 C4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 C5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 C6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 E1 -0.5055 0.0000 0.0000 0.0000 0.0000 0.0000 E2 -0.1628 -0.3630 0.0000 0.0000 0.0000 0.0000 E3 -0.0643 -0.0985 -0.7275 0.0000 0.0000 0.0000 E4 0.1708 -0.0624 -0.3856 -0.5135 0.0000 0.0000 E5 -0.0731 -0.0553 0.0299 -0.0412 -0.6049 0.0000 E6 -0.0982 0.0802 -0.0224 -0.0441 -0.0437 -0.2756 MATRIX R This is a computed FULL matrix of order 6 by 6 [=A+C+E] 1 2 3 4 5 6 1 0.6726 0.1274 0.1858 0.1637 0.2686 0.5706 2 0.1274 1.8150 0.4256 0.0925 0.9149 0.7954 3 0.1858 0.4256 3.3965 1.5850 0.0402 1.1957 4 0.1637 0.0925 1.5850 1.2860 0.0521 0.7975 5 0.2686 0.9149 0.0402 0.0521 1.2713 0.8550 6 0.5706 0.7954 1.1957 0.7975 0.8550 4.9038 MATRIX S This is a computed FULL matrix of order 6 by 6 [=(\SQRT(I.R))~] 1 2 3 4 5 6 1 1.2193 0.0000 0.0000 0.0000 0.0000 0.0000 2 0.0000 0.7423 0.0000 0.0000 0.0000 0.0000 3 0.0000 0.0000 0.5426 0.0000 0.0000 0.0000 4 0.0000 0.0000 0.0000 0.8818 0.0000 0.0000 5 0.0000 0.0000 0.0000 0.0000 0.8869 0.0000 6 0.0000 0.0000 0.0000 0.0000 0.0000 0.4516 MATRIX X This is a LOWER TRIANGULAR matrix of order 6 by 6 1 2 3 4 5 6 1 -0.7076 2 -0.0515 -1.2349 3 -0.1931 -0.2436 -1.2064 4 -0.3449 -0.0669 -0.7676 -0.0245 5 -0.3313 -0.6877 0.1385 0.1046 -0.4235 6 -0.6789 -0.6474 -0.7021 1.7423 -0.0571 0.1389 MATRIX Y This is a LOWER TRIANGULAR matrix of order 6 by 6 1 2 3 4 5 6 1 0.0000 2 0.0000 0.0000 3 0.0000 0.0000 0.0000 4 0.0000 0.0000 0.0000 0.0000 5 0.0000 0.0000 0.0000 0.0000 0.0000 6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 MATRIX Z This is a LOWER TRIANGULAR matrix of order 6 by 6 1 2 3 4 5 6 1 -0.4145 2 -0.2194 -0.4890 3 -0.1186 -0.1816 -1.3407 4 0.1937 -0.0708 -0.4373 -0.5824 5 -0.0824 -0.0623 0.0337 -0.0465 -0.6821 6 -0.2175 0.1776 -0.0495 -0.0976 -0.0967 -0.6103 *** WARNING! *** Minimization may not be successful. See above CODE GREEN - it probably was OK Your model has 48 estimated parameters and 960 Observed statistics -2 times log-likelihood of data >>> 2882.097 Degrees of freedom >>>>>>>>>>>>>>>> 912 Akaike's Information Criterion >>>> 1058.097 Bayesian Information Criterion >>>> -640.294 Sample size Adjusted BIC >>>> 799.496 Deviance Information Criterion >>>> 197.778 Saturated model fit* >>>>>>>>>>> 2656.321 Saturated model df* >>>>>>>>>>> 780 Difference Chi-squared >>>>>>>> 225.776 Difference d.f. >>>>>>>>>>>>>>> 132 Probability >>>>>>>>>>>>>>>>>>>> 0.000 Akaike's Information Criterion > -38.224 * Saturated model statistic supplied by user This problem used 0.7% of my workspace Task Time elapsed (DD:HH:MM:SS) Reading script & data 0: 0: 0: 0.14 Execution 0: 0: 0:13.55 TOTAL 0: 0: 0:13.69 Total number of warnings issued: 2 ______________________________________________________________________________