! Estimate Genetic (QTL) and Environmental Components - FEQ model ! Dutch Adult Twins: Lipid levels (position 65 cM chromosome 19) #define $var ldl !3 variables in the file ldl apob apoe #define nvar 1 #define nvarx2 2 #NGroups 5 G1: Model Parameters Calculation Begin Matrices; X Lower nvar nvar Free ! residual familial path coefficients Z Lower nvar nvar Free ! nonshared environment path coefficients T Lower nvar nvar Free ! QTL path coefficients H Full 1 1 End Matrices; Matrix H .5 Start .3 All Begin Algebra; F=X*X'; ! residual familial variance components E=Z*Z'; ! nonshared environment variance components Q=T*T'; ! QTL variance components End Algebra; Option Rsiduals End G2: DZ IBD2 twins Data NInput=18 Rectangular File=DutchDZ.rec Labels zyg sex1 age1 med1 t1ldl t1apob t1lnapoe sex2 age2 med2 t2ldl t2apob t2lnapoe ibd0_65 ibd1_65 ibd2_65 pihat65 pi65cat Select if pi65cat =2; Select t1$var t2$var ; Begin Matrices = Group 1; M Full nvar nvarx2 Free K Full 1 1 ! correlation of QTL effects End Matrices; Matrix M 4 4 Matrix K 1 Means M; Covariance F+Q+E | F+K@Q _ F+K@Q | F+Q+E; End G3: DZ IBD1 twins Data NInput=18 Rectangular File=DutchDZ.rec Labels zyg sex1 age1 med1 t1ldl t1apob t1lnapoe sex2 age2 med2 t2ldl t2apob t2lnapoe ibd0_65 ibd1_65 ibd2_65 pihat65 pi65cat Select if pi65cat =1; Select t1$var t2$var ; Begin Matrices = Group 1; M Full nvar nvarx2 Free K Full 1 1 End Matrices; Matrix M 4 4 Matrix K .5 Means M; Covariance F+Q+E | F+K@Q _ F+K@Q | F+Q+E; End G4: DZ IBD0 twins Data NInput=18 Rectangular File=DutchDZ.rec Labels zyg sex1 age1 med1 t1ldl t1apob t1lnapoe sex2 age2 med2 t2ldl t2apob t2lnapoe ibd0_65 ibd1_65 ibd2_65 pihat65 pi65cat Select if pi65cat =0; Select t1$var t2$var ; Begin Matrices = Group 1; M Full nvar nvarx2 Free End Matrices; Matrix M 4 4 Means M; Covariance F+Q+E | F_ F | F+Q+E; Option Rsiduals Iterations=5000 NDecimals=4 Option Multiple Issat End G5: Standardization Calculation Begin Matrices = Group 1; Begin Algebra; V=F+E+Q; ! total variance P=F|E|Q; ! concatenate parameter estimates S=P@V~; ! standardized parameter estimates End Algebra; Label Col P f^2 e^2 q^2 Label Col S f^2 e^2 q^2 !FEQ model Interval S 1 1 - S 1 3 Option Rsiduals Iterations=5000 NDecimals=4 Option Multiple Issat End ! Test for QTL Drop T 1 1 1 Exit