Introduction to Multivariate Genetic Analysis

Kate Morley and Frühling Rijsdijk

21st Twin and Family Methodology Workshop, March 2008

Aim and Rationale

- Aim: to examine the source of factors that make traits correlate or co-vary
- Rationale:
 - Traits may be correlated due to shared genetic factors (A) or shared environmental factors (C or E)
 - Can use information on multiple traits from twin pairs to partition covariation into genetic and environmental components

Example 1

- Why do traits correlate/covary?
- How can we explain the association?
 - Additive genetic factors (r_G)
 - Shared environment (r_c)
 - Non-shared environment (r_E)
- Kuntsi et al. (2004) Am J Med Genet B, 124:41

Example 2

- Associations between phenotypes over time
 - Does anxiety in childhood lead to depression in adolescence?
- How can we explain the association?
 - Additive genetic factors (a₂₁)
 - Shared environment (c₂₁)
 - Non-shared environment (e₂₁)
 - How much is not explained by prior anxiety?
- Rice et al. (2004) BMC Psychiatry 4:43

Sources of Information

- As an example: two traits measured in twin pairs
- Interested in:
 - Cross-trait covariance within individuals
 - Cross-trait covariance between twins
 - MZ:DZ ratio of cross-trait covariance between twins

Observed Covariance Matrix

		Twin 1		Twin 2	
		Phenotype 1	Phenotype 2	Phenotype 1	Phenotype 2
Twin 1	Phenotype 1	Variance P1			
	Phenotype 2	Covariance P1-P2	Variance P2		
-win 2	Phenotype 1	Within-trait P1	Cross-trait	Variance P1	
F	Phenotype 2	Cross-trait	Within-trait P2	Covariance P1-P2	Variance P2

Observed Covariance Matrix

		Twin 1		Twin 2		
		Phenotype 1	Phenotype 2	Phenotype 1	Phenotype 2	
		Within-twin	covariance			
Twin 1	Phenotype 1	Variance P1				
	Phenotype 2	Covariance P1-P2	Variance P2			
				Within-twin	covariance	
Twin 2	Phenotype 1	Within-trait P1	Cross-trait	Variance P1		
	Phenotype 2	Cross-trait	Within-trait P2	Covariance P1-P2	Variance P2	

Observed Covariance Matrix

		Twin 1		Twin 2		
		Phenotype 1	Phenotype 2	Phenotype 1	Phenotype 2	
		Within-twin	covariance			
/in 1	Phenotype 1	Variance P1				
F	Phenotype 2	Covariance P1-P2	Variance P2			
		Cross-twin	covariance	Within-twin	covariance	
Twin 2	Phenotype 1	Within-trait P1	Cross-trait	Variance P1		
	Phenotype 2	Cross-trait	Within-trait P2	Covariance P1-P2	Variance P2	

SEM: Cholesky Decomposition

SEM: Cholesky Decomposition

SEM: Cholesky Decomposition

Why Fit This Model?

- Covariance matrices must be positive definite
- If a matrix is positive definite, it can be decomposed into the product of a triangular matrix and its transpose:

▲ A = X*X'

- Many other multivariate models possible
 - Depends on data and hypotheses of interest

Cholesky Decomposition

Path Tracing

		Twin 1		Twin 2		
		Phenotype 1	Phenotype 2	Phenotype 1	Phenotype 2	
		Within-twin	covariance			
vin 1	Phenotype 1	a ₁₁ ² +c ₁₁ ² +e ₁₁ ²				
F	Phenotype 2	a ₁₁ a ₂₁ +c ₁₁ c ₂₁ + e ₁₁ e ₂₁	$a_{22}^{2}+a_{21}^{2}+c_{22}^{2}+c_{21}^{2}+c_{21}^{2}+c_{21}^{2}+c_{21}^{2}$			
		Cross-twin	covariance	Within-twin	covariance	
win 2	Phenotype 1	1/.5a ₁₁ ² +c ₁₁ ²		a ₁₁ ² +c ₁₁ ² +e ₁₁ ²		
	Phenotype 2	1/.5a ₁₁ a ₂₁ + C ₁₁ C ₂₁	$\frac{1}{5a_{22}^{2}+1}$	a ₁₁ a ₂₁ +c ₁₁ c ₂₁ + e ₁₁ e ₂₁	$a_{22}^{2}+a_{21}^{2}+c_{22}^{2}+c_{21}^{2$	

		Twin 1		Twin 2		
		Phenotype 1	Phenotype 2	Phenotype 1	Phenotype 2	
		Within-twin	covariance			
Twin 1	Phenotype 1	Variance P1				
	Phenotype 2	Covariance P1-P2	Variance P2			
		Cross-twin	covariance	Within-twin	covariance	
Twin 2	Phenotype 1	Within-trait P1	Cross-trait	Variance P1		
	Phenotype 2	Cross-trait	Within-trait P2	Covariance P1-P2	Variance P2	

		Twin 1		Twin 2		
		Phenotype 1	Phenotype 2	Phenotype 1	Phenotype 2	
		Within-twin	covariance			
/in 1	Phenotype 1	Variance P1		Covariance P2 the sam	e of P1 and ne across	
Ļ	Phenotype 2	Covariance P1-P2	Variance P2	twins and z	zygosity groups	
		Cross-twin covariance		Within-twir	n covariance	
Twin 2	Phenotype 1	Within-trait P1	Cross-trait	Variance F1		
	Phenotype 2	Cross-trait	Within-trait P2	Covariance P1-P2	Variance P2	

		Twin 1		Twin 2		
		Phenotype 1	Phenotype 2	Phenotype 1	Phenotype 2	
		Within-twin	covariance			
Twin 1	Phenotype 1	Variance P1		Cross-tw within ea	vin covariance ach trait differs	
	Phenotype 2	Covariance P1-P2	Variance P2	by zygos	sity	
		Cross-twin covariance		Within-twi	n covariance	
Twin 2	Phenotype 1	Within-trait P1	Cross-trait	Variance P1		
	Phenotype 2	Cross-trait	Within-trait P2	Covariance P1-P2	Variance P2	

		Twin 1		Twin 2		
		Phenotype 1	Phenotype 2	Pł	nenotype 1	Phenotype 2
		Within-twin	covariance			
Twin 1	Phenotype 1	Variance P1		Cross-twin cross-tra covariance differs b zygosity		n cross-trait e differs by
	Phenotype 2	Covariance P1-P2	Variance P2			
		Cross-twin covariance		V	Vithin-twin	covariance
Twin 2	Phenotype 1	Within-trait P1	Cross-trait		Variance P1	
	Phenotype 2	Cross-trait	Within-trait P2	C	Covariance P1-P2	Variance P2

Summary

- Within-individual cross-trait covariance implies common aetiological influences
- Cross-twin cross-trait covariance implies common aetiological influences are familial
- Whether familial influences genetic or environmental shown by MZ:DZ ratio of cross-twin cross-trait covariances

Cholesky Decomposition

Specification in Mx

Mx Parameter Matrices

#define nvar 2 Begin Matrices; X lower nvar nvar free Y lower nvar nvar free Z lower nvar nvar free G Full 1 nvar free H Full 1 1 fix End Matrices; Begin Algebra; A=X*X'; C=Y*Y'; E=Z*Z'; P=A+C+EEnd Algebra;

- ! Genetic coefficients
 - ! C coefficients
 - ! E coefficients
 - ! Means
 - ! 0.5 for DZ A covar
 - ! A var/cov
 - ! C var/cov
 - ! E var/cov

Within-Twin Covariance

Path Tracing:

$$\Sigma_A = \begin{bmatrix} a_{11}^2 & a_{11}a_{21} \\ a_{21}a_{11} & a_{21}^2 + a_{22}^2 \end{bmatrix}$$

Within-Twin Covariance

Within-Twin Covariance

$$\Sigma_P = \begin{bmatrix} +c_{11}^2 + e_{11}^2 \\ +c_{21}c_{11} + e_{11}e_{21} \end{bmatrix} + c_{11}c_{21} + e_{11}e_{21} \\ +c_{21}^2 + c_{22}^2 + e_{21}^2 + e_{22}^2 \end{bmatrix}$$

Within-traits $P11-P12 = 0.5a_{11}^2$ $P21-P22 = 0.5a_{22}^2+0.5a_{21}^2$

Within-traits P11-P12 = $0.5a_{11}^2$ P21-P22 = $0.5a_{22}^2$ + $0.5a_{21}^2$

Cross-traits P11-P22 = $0.5a_{11}a_{21}$ P21-P12 = $0.5a_{21}a_{11}$

Additive Genetic Cross-Twin Covariance (DZ)

Additive Genetic Cross-Twin Covariance (MZ)

$$1\otimes \Sigma_A = 1\otimes \mathbf{X}*\mathbf{X}' = \left[egin{array}{cc} a_{11}^2 & a_{11}a_{21}\ a_{21}a_{11} & (a_{21}^2+a_{22}^2) \end{array}
ight]$$

Common Environment Cross-Twin Covariance

$$1 \otimes \Sigma_C = 1 \otimes \mathbf{Y} * \mathbf{Y}' = \begin{bmatrix} c_{11}^2 & c_{11}c_{21} \\ c_{21}c_{11} & (c_{21}^2 + c_{22}^2) \end{bmatrix}$$

Covariance Model for Twin Pairs

A+C | A+C+E /

- MZ:
 - Covariance
 A+C+E
 A+C_
- DZ:
 - Covariance A+C+E | H@A+C_
 H@A+C | A+C+E /

N.B. H Full 1 1 Fixed = 0.5

Obtaining Standardised Estimates

Correlated Factors Solution

- Each variable decomposed into genetic/environmental components
- Correlations across variables estimated
- Results from Cholesky can be converted to this model

Covariance to Correlation

$$r_{12} = \frac{\sigma_{12}^2}{\sqrt{\sigma_{11}^2 \times \sigma_{22}^2}} = \frac{1}{\sqrt{\sigma_{11}^2}} * \sigma_{12}^2 * \frac{1}{\sqrt{\sigma_{22}^2}}$$

Using matrix algebra notation:

$$\begin{bmatrix} 1 & r_{12} \\ r_{21} & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{\sigma_{11}^2}} & 0 \\ 0 & \frac{1}{\sqrt{\sigma_{22}^2}} \end{bmatrix} * \begin{bmatrix} \sigma_{11}^2 & \sigma_{12}^2 \\ \sigma_{21}^2 & \sigma_{22}^2 \end{bmatrix} * \begin{bmatrix} \frac{1}{\sqrt{\sigma_{11}^2}} & 0 \\ 0 & \frac{1}{\sqrt{\sigma_{22}^2}} \end{bmatrix}$$

Genetic Correlations

$$\begin{split} \Sigma_A &= \begin{bmatrix} a_{11}^2 & a_{11}a_{21} \\ a_{21}a_{11} & a_{21}^2 + a_{22}^2 \end{bmatrix} \\ &= \begin{bmatrix} \sigma_{A_{11}}^2 & \sigma_{A_{12}}^2 \\ \sigma_{A_{21}}^2 & \sigma_{A_{22}}^2 \end{bmatrix} \\ ^1_{r_G \ 1} \ \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{\sigma_{A_{11}}^2}} & 0 \\ 0 & \frac{1}{\sqrt{\sigma_{A_{22}}^2}} \end{bmatrix} * \begin{bmatrix} \sigma_{A_{11}}^2 & \sigma_{A_{22}}^2 \\ \sigma_{A_{21}}^2 & \sigma_{A_{22}}^2 \end{bmatrix} * \begin{bmatrix} \frac{1}{\sqrt{\sigma_{A_{11}}^2}} & 0 \\ 0 & \frac{1}{\sqrt{\sigma_{A_{22}}^2}} \end{bmatrix} \end{split}$$

Specification in Mx

$$\begin{bmatrix} 1 & r_G \\ r_G & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{\sigma_{A_{11}}^2}} & 0 \\ 0 & \frac{1}{\sqrt{\sigma_{A_{22}}^2}} \end{bmatrix} * \begin{bmatrix} \sigma_{A_{11}}^2 & \sigma_{A_{12}}^2 \\ \sigma_{A_{21}}^2 & \sigma_{A_{22}}^2 \end{bmatrix} * \begin{bmatrix} \frac{1}{\sqrt{\sigma_{A_{11}}^2}} & 0 \\ 0 & \frac{1}{\sqrt{\sigma_{A_{22}}^2}} \end{bmatrix}$$

and
$$\mathbf{I}.\mathbf{A} = \begin{bmatrix} \sigma_{A_{11}}^2 & \mathbf{0} \\ \mathbf{0} & \sigma_{A_{22}}^2 \end{bmatrix}$$

Interpreting Results

- High genetic correlation = large overlap in genetic effects on the two phenotypes
- Does it mean that the phenotypic correlation between the traits is largely due to genetic effects?
 - No: the substantive importance of a particular r_G depends the value of the correlation and the value of the √σ_A² paths i.e. importance is also determined by the heritability of each phenotype

Proportion of r_P due to additive genetic factors:

$$(\sqrt{h_{P1}^2} * r_G * \sqrt{h_{P2}^2})/r_P$$

 $(\sqrt{0.63} * -0.525 * \sqrt{0.33}) / -0.29 = 0.8357$

Standardised Results

- Begin algebra;
 - K = A & P | C & P | E & P;

End algebra;

% is the Mx operator for element division

Example Mx Output

- Matrix K:
 - Additive Genetic Component of ADHD = 63%, for IQ = 33%
 - % of covariance between ADHD and IQ due to A = 84%

Interpretation of Correlations

Consider two traits with a phenotypic correlation of 0.40 :

$h_{P1}^2 = 0.7$ and $h_{P2}^2 = 0.6$ with $r_G = .3$

- Correlation due to additive genetic effects = ?
- Proportion of phenotypic correlation attributable to additive genetic effects = ?

 $h_{P1}^2 = 0.2$ and $h_{P2}^2 = 0.3$ with $r_G = 0.8$

- Correlation due to additive genetic effects = ?
- Proportion of phenotypic correlation attributable to additive genetic effects = ?

Interpretation of Correlations

Consider two traits with a phenotypic correlation of 0.40 :

$h_{P1}^2 = 0.7$ and $h_{P2}^2 = 0.6$ with $r_G = .3$

- Correlation due to additive genetic effects = 0.19
- Proportion of phenotypic correlation attributable to additive genetic effects = 0.49

 $h_{P1}^2 = 0.2$ and $h_{P2}^2 = 0.3$ with $r_G = 0.8$

- Correlation due to additive genetic effects = 0.20
- Proportion of phenotypic correlation attributable to additive genetic effects = 0.49

Weakly heritable traits can still have a large portion of their correlation attributable to genetic effects.

More Variables...

More Variables...

Mx Parameter Matrices

- #define nvar 3
- Begin Matrices;
- X lower nvar nvar free
- Y lower nvar nvar free
- Z lower nvar nvar free
- G Full 1 nvar free
- H Full 1 1 fix
- End Matrices;
- Begin Algebra;
- A=X*X';
- C=Y*Y';
- E=Z*Z';
- P=A+C+E
- End Algebra;

- ! Genetic coefficients
 - ! C coefficients
 - ! E coefficients
 - ! Means
 - ! 0.5 for DZ A covar

- ! Gen var/cov
- ! C var/cov
- ! E var/cov

Expanded Matrices

