#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # Simulation program for twin pairs in R # # Benjamin Neale # # March 2008 # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # '#' denotes a comment #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # # # Parameters # # # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# ad2<-0.5 #Additive genetic variance component (a squared) co2<-0.3 #Common environment variance component (c squared) en2<-0.2 #Specific environment variance component (e squared) MZN<-200 #Number of MZ twin pairs DZN<-200 #Number of DZ twin pairs outfile<-"sim.fun" #output file for the simulation #Assignment in R uses a<-b or b->a in both cases b is stored in a #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# # # # Data generation # # # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# vals<-matrix(rnorm((MZN*4+DZN*6)),,10); #4 random normals per twin pair for latent factors one<-matrix(1,MZN,1); #Zygosity for MZs two<-matrix(2,DZN,1); #Zygosity for DZs ad<-sqrt(ad2); #Unsquared additive genetic component co<-sqrt(co2); #Unsquared common environment component en<-sqrt(en2); #Unsquared specific environment component #MZ data generation follows: MZ<-matrix(cbind(one,ad*vals[,1]+co*vals[,2]+en*vals[,3],ad*vals[,1]+co*vals[,2]+en*vals[,4]),,3); #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# #ad*vals[,1] is the additive genetic component times a random normal # #co*vals[,2] is the common environment component times a random normal # #en*vals[,3] is the specific environment component times a random normal # #As MZs correlate completely we use 1 random variable for A and C # #while MZ do not correlate on specific environment (en*vals[,3] and en*vals[,4]) # #so we have to use separate random variables for each individual twin # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# #square root of .5 srf<-sqrt(.5); #DZ data generation follows: DZ<-matrix(cbind(two,srf*ad*vals[,5]+srf*ad*vals[,6]+co*vals[,7]+en*vals[,8],srf*ad*vals[,5]+srf*ad*vals[,9]+co*vals[,7]+en*vals[,10]),,3); #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# #As DZs correlate only 50% on A we use 3 random variables for the A # #1 for the shared piece and then 2 for the specific pieces # #Common environment and specific environment work in the same manner as the MZs # #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# write.table(rbind(MZ,DZ),file=outfile,row.names=FALSE,col.names=FALSE)