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Quantitative Genetics and Quantitative Traits

Introduction

In the chapter on Mendel and Morgan, we saw how the transmission of genes
from one generation to another follows precise mathematical formula. The traits
discussed in that chapter, however, were discrete traits—peas are either yellow or green,
someone either has a disorder or does not have the disorder. But many behavioral traits
are not like these clear-cut, have-it-or-don’t-have-it phenotypes. People vary from being
quite shy to very outgoing. But is shyness a discrete trait or merely a descriptive
adjective for one end of a continuous distribution? In this chapter, we will discuss the
genetics of quantitative, continuously distributed distribution.

Let us note first that genetics has made important—albeit not well
recognized—contributions to quantitative methodology in the social sciences. The
concept of regression was initially developed by Sir Francis Galton in his attempt to
predict offspring’s phenotypes from parental phenotypes; it was later expanded and
systematized by his colleague, Karl Pearson?, in the context of evolutionary theory. The
analysis of variance was formulated by Sir Ronald A. Fisher? to solve genetic problems in
agriculture. Finally, the famous American geneticist Sewell Wright developed the
technique of path analysis which is now used widely in psychology, sociology,
anthropology, and other social sciences.

Basic Tools: Three Statistics

To understand quantitative genetics, it is important to understand the meaning of
three basic statistics—the mean, the variance, and the correlation coefficient. The
mathematics behind each of these three statistics is much less important that the
conceptual issues of what they measure.

The mean is ameasure of central tendency or location and answers the question,
“Around which number do the scores tend to cluster?” The mean is the arithmetic
average and is computed by summing all the scores and dividing by the number of
observations.

The variance of a collection of scores is a measure of individual differences around
the mean. It is a measure of the degree to which the scores are dispersed away from the
mean. A variance can range from 0 to a large positive number. A variance of 0 signifies
that there is no dispersion around the mean—every score is the same and every score
equals the mean. The larger the variance, the more the scores are scattered around the
mean.

An important feature of variance is that it can be partitioned. As we will see, the
variance in the phenotype can be partitioned into a portion due to genetic variance and
another portion due to environmental variance. This partitioning helps geneticists to
answer two important questions—to what extent are observable individual differences

1 After whom is named the Pearson product moment correlation.
2 After whom the F statistic is named.
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due to individual differences in genotype and to what extent are observable individual
differences due to individual differences in the environment?

A correlation coefficient is a measure of the extent to which one scores on one
variable can predict scores on a second variable. Mathematically, a correlation
coefficient can range from -1.0 to 1.0. There are two important attributes of a correlation
coefficient. The first is the sign of the correlation. A positive sign (i.e., a correlation
between 0 and 1.0) denotes a direct relationship. Here, high scores on the first variable
predict high scores on the second variable, and conversely low scores on the second
variable predict low scores on the second variable. The correlation between height and
weight is positive. People who are taller than average tend to (but do not necessary have
to) weigh more than the average person, and people smaller than average in height tend to
weigh less than the average person. A negative sign (i.e., a correlation coefficient less than
0) denotes an inverse relationship. In this case, high scores on one variable predict low
scores on the second variable, and conversely low scores on the first variable predict high
scores on the second variable. The correlation between the amount of time spent partying
and grades is negative. Students who spend a very large amount of time partying tend to
get lower than average grades while students who spend little time at parties tend to
receive higher grades.

The second important attribute of the correlation is the square of the correlation
coefficient. Because a correlation can range between -1.0 and 1.0, the square of the
correlation must range between 0 and 1.0. The square of the correlation is a measure of
the amount of predictability between the two variables. Statistically speaking, the
correlation squared gives the proportion of variance in one variable that is predicable
from the other variable. Because variance is a measure of individual differences, another
way of stating the previous statement is that the correlation squared is a measure of the
extent to which individual differences in one variable are predictable from the second
variable. If the correlation squared is 0, then there is no predictability—the two variables
are not related to each other. If the squared correlation is 1.0, then we can perfectly
predict scores on one variable by knowing scores on the second variable.

Continuous Variation and the Single Locus

Let us begin the development of a quantitative model by considering a single gene
with two alleles, a and A. Define the genotypic value (a.k.a. genetic value) for a genotype
as the average phenotypic value for all individuals with that genotype. For example,
suppose that the phenotype were 1Q, and we measured 1Q on a very large number of
individuals. Suppose that we also genotyped these individuals for the locus. The
genotypic value for genotype aa would be the average 1Q of all individuals who had
genotype aa. A hypothetical example is presented in Figure X.1.

The first point to notice about Figure X.1 is the variation in 1Q around each of the
three genotypes, aa, Aa, and AA. Not everyone with genotype aa, say, has the same 1Q.
The reasons for this variation within each genotype is unknown. It would include
environmental variation as well as the effects of loci other than the one genotyped.
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Figure X.1. Example and notation for the quantitative genetic analysis of asingle locus.
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A second important feature about Figure 1 is that the means of the distributions
for the three genotypes differ. The mean 1Q (i.e., the genotypic value) for aa is 94, that
for Aa is 96, and the mean for AAis 108. This implies that the locus has some influence
on individual differences in 1Q.

A third feature of note in Figure X.1 is that the genotypic value of heterozygote is
not equal to the average of the genotypic values of the two homozygotes. The average
value of genotypes aa and AAis (94 + 108)/2 = 101, but the actual genotypic value of Aa
is 96. This indicates a certain degree of dominant gene action for allele a. Allele a is not
completely dominant; otherwise, the genotype value for Aa would equal that of aa.
Hence, the degree of dominance is incomplete.

A fourth feature of importance is that the curves for the three genotypes do not
achieve the same height. This is due to the fact that the three genotypes have different
frequencies. In the calculations used to generate the figure, it was assumed that the allele
frequency for a was .4 and the frequency of A was .6. Hence, the frequency of genotype
aa would be .16, the frequency of Aa would be .48, and the frequency of AA would be
.36. Consequently, the curve for Aa has the highest peak, the one for AA has the second
highest peak, and that for aa has the smallest peak.

A final feature of note is that the phenotypic distribution of 1Q in the general
population (the black line in Figure X.1) looks very much like a normal distribution. The
phenotypic distribution is simply the sum of the distributions for the three genotypes.
For example, the height of the black curve when 1Q equals 90 is the distance from the
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horizontal axis to the yellow line when 1Q is 90 plus the distance from the horizontal axis
to the blue line plus the distance from the horizontal axis to the red line. Often social
scientists mistakenly conclude that the phenotypic distribution must be trimodal because
it is the sum of three different distributions.

The gene depicted in Figure X.1 is currently termed a QTL for Quantitative Trait
Locus. Behavioral genetic research devotes considerable effort towards uncovering QTLs
for many different traits—intelligence, reading disability, various personality traits, and
psychopathology. The mathematical models that quantify the extent to which a QTL
contributes to trait variance are not necessary for us to know. The interesting reader may
consult the Advanced Topics section at the end of this chapter.

Continuous Variation and Multiple Loci

Suppose that we could genotype people at another locus for 1Q, say the B locus
with its two alleles, b and B. We would now have nine genotypic values as illustrated in
Table X.1. Once again, we would compute the mean 1Q score for all those with a
genotype of aabb and then enter this mean in the appropriate cell of the table.

Table X.1 Genotypic values for two loci.

bb Bb BB Mean
AA AAbb 101 AABb 106 AABB 111 108
Aa Aabb 89 AaBb 94 AaBB 99 96
aa aabb 87 aaBb 92 aaBB 97 94
Mean 93 98 103 100

We could also draw curves for each genotype analogous to the curves depicted in
Figure X.1. This time, however, there would be nine normal curves, one for each
genotype. We could continue by adding a third locus with two alleles. This would give
27 different genotypes and 27 curves. If we could identify each and every locus that
contributes to 1Q, then we would probably have a very large number of curves. The
variation within each curve would be due to the environment.

This model is known as the polygenic model—poly for many and genic for genes.
A special case of polygenic transmission occurs when there are only a few QTLSs that
contribute to a trait. This is called oligogenic transmission (oligo for few). There is not
an exact number of loci that distinguish oligogenic from polygenic transmission. Indeed,
the mathematics behind oligogenic and polygenic models are identical except for the
number of loci. At the present time, there is no empirical evidence that gives even a
remote glimpse at the number of genes that may be responsible for human quantitative
traits. It may turn out that only five or six QTLs are needed to explain all but a small

3 The phenotypic distribution may be trimodal, but it will be so only when the means for the three
genotypes are very, very different. When single genes exert only a small influence on a phenotype, then the
phenotypic distribution can appear quite smooth as the present example suggests.



© Gregory Carey, 1998 (incomplete: 10/30/98) Quantitative Genetics - 5

amount of genetic variance in some phenotypes. However, the number of genes
expressed in the mammalian central nervous system is estimated in the tens of thousands,
S0 many traits may involve hundreds of loci.

Heritability and Environmentability

The concepts of heritability and environmentability of polygenic traits are central
to quantitative analysis in behavioral genetics. Instead of providing formal definitions of
these terms, let us begin with a simple thought experiment and then discover the
definitions through induction.

Imagine that scores on the behavioral trait of impulsivity are gathered on a
population of individuals. These observed scores will be called the phenotypic values of
the individuals. Assume that there was a futuristic genetic technology that could
genotype all of the individuals in this population for all the loci that contribute to
impulsivity. One could then construct a genotypic value for each individual. Just as with
one or two loci, the genotypic value for a polygenic trait is defined as the mean
phenotypic value of all those individuals with that genotype in the population. For
example, if Wilbur Waterschmeltzer’s genotype for impulsivity is AaBBCCddEeff and
the mean impulsivity score for all individuals in the population who have genotype
AaBBCCddEeff is 43.27, then Wilbur’s genotypic value is 43.27.

Imagine another technical advance that would permit us to calculate and quantify
all the environmental experiences in a person’s life that could contribute to the person’s

Table X.2. Hypothetical data set containing the phenotypic, !evel Of_ ] .
. . N impulsivity. This
genetic, and environmental values for individuals. would be the
: _ . environmental
Genetic | Environ- | Phenotypic value for an
Value mental Value individual. We
Observation =G Value =P would now have a
: =E very large set of
Abernathy Abercrombie 113 96 107 data, the initial
Beulah Bellingwacker 92 74 77 part of which
) . : would resemble
Zelda Zorkminder 118 104 118 Table X.2.
We would

compute a correlation coefficient between the genotypic values and the phenotypic
values. Recall that the square of the correlation coefficient between two variables gives
the proportion of variance in one variable attributable to (i.e., predicted by) the other
variable. Consequently, if we square the correlation coefficient between the genotypic
values and the phenotypic values, we would arrive at the proportion of phenotypic
variance predicted by (or attributable to) genetic variance. This quantity, the square of
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the correlation coefficient between genotypic values and phenotypic values, is called
heritability”.

Thus, heritability is a quantitative index of the importance of genetics for
individual differences in a phenotype. Strictly defined, heritability is the proportion of
phenotypic variance attributable to or predicted by genetic variance. Because heritability
is a proportion, it will range from 0 to 1.0. A heritability of 0 means that there is no
genetic influence on a trait, whereas a heritability of 1.0 mean that trait variance is due
solely to heredity. A less technical view would define heritability as a measure, ranging
from 0 to 1.0, of the extent to which observed individual differences can be traced in any
way to genetic individual differences.

Just as we could compute a correlation between genetic values and phenotypic
values, we could also compute correlations between environmental values and phenotypic
values. Squaring this correlation would give us the environmentability of the trait.
Environmentability has the same logical meaning as heritability but applies to the
environment instead of the genes. Environmentability is the proportion of phenotypic
variance attributable or predicted by environmental variance. It is also a quantitative
index, ranging from 0 to 1.0, of the extent to which environmental individual differences
underlie observable, phenotypic individual differences.

Estimating Heritability and Environmentability
Family Correlations

Even with the marvelous technology of modern genetics, it is not possible to
directly measure genotypic values for
polygenic traits. And it stretches imagination
to suppose that we can measure
environmental values for all those varying
factors that influence a trait. Instead, we

Table X.3. Organization of data for
computing the correlation between
parent and offspring.

Parent | Child observe only phenotypes in relatives.
Family 1Q 1Q Table X.3 illustrates the type of data
Athabaska 107 104 that behavioral geneticists gather. The family
Bottomwinger 77 98 is the unit of observation and the phenotypic
: scores for the different classes of relatives are
Zakmeister 118 102 the variables. For the data in Table X.3, we

would compute the correlation between the
i variables “parental 1Q” and “child 1Q” giving a
parent-offspring correlation®.

4 Two assumptions are necessary to define heritability (and later, environmentability) thisway. First, itis
assumed that the genotypic values are uncorrelated with the environmental values. Second, thereis no
statistical interaction between genotypic values and environmental values. These assumptions will be
discussed |ater int he handout.

5 The reader familiar with data analysis should realize that because families do not have the same number of
offspring, family datais usually not “rectangular.” There are methods to take care of such data sets but they
are too advanced for thistext. The interested reader should consult Neale and Cardon (199x).
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But correlations among the relationships in ordinary nuclear families cannot be
used to estimate heritability. Behavioral similarity between, say, parents and offspring,
may be due to any of three factors: (1) shared genes; (2) shared family environment; and
(3) some combination of shared genes and shared family environment. Consequently,
behavioral scientists usually study two special types of relatives to tease apart the
influence of shared genes from that of shared environment. These two special
populations are twins and adoptees. Each is discussed in turn.

The Twin Method: Rationale

Monozygotic (MZ) or identical twins are the result of the fertilization of a single
egg. The cells from this zygote® divide and divide, but early in the course of
development, some cells physically separate and begin development as an independent
fetus. The reasons for the separation are currently unknown. Because the two
individuals start out with the same genes, they are effectively genetic clones of each other.
Any differences between the members of an identical twin pair must be due to the
environment. Included in the environment is the fact that one twin may have developed
from more cells than the other since it is suspected that the original separation is seldom
an equal 50-50 split. MZ twins look so alike that they are often confused by people who
do not know them well.

Dizytogic (DZ) or fraternal twins result when a woman double ovulates and each
egq is independently fertilized. Genetically, DZ twins are as alike as ordinary siblings,
sharing on average 50% of their genes, and look alike as ordinary brothers and sisters
Differences between the members of a fraternal twin pair will be due to both the
environment and also to the different alleles that each member inherits.

Consequently, the logic of the twin method is quite simple. If genes contribute to
a trait, then MZ twins should be more similar to each other than DZ twins. Thus, the
striking physical similarity of MZ twins in terms of height, facial features, body shape,
hair color, eye color, etc. suggests that genes influence individual differences in these traits
because fraternal twins are as alike in their physical features as ordinary siblings.

The Adoption Method: Rationale

The logic of the adoption method is as simple as the logic of the twin method,
provided that nonfamilial adoptions are used. When parents adopt and raise a child to
whom they are not genetically related, then any similarity between the parents and child
must have something to do with the environment. Similarly, when there are two adoptive
children raised in the same family, then sibling resemblance between the two must also be
environmental in nature.

When children are adopted at shortly after their birth, then shared genes are the
only reason why they would show similarity with their biological relatives. Thus,
correlations between adoptees and their genetic relatives give evidence for heritability.

5 A zygote is scientificese for afertilized egg.
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The Quantitative Model

A model for the similarity for any of pair of relatives is depicted in Figure X.2. In
this figure, G denotes genotypic value, E denotes environmental value, and P stands for
phenotypic value’. Subscripts 1 and 2 denote respectively, the first and the second
relative. If the relatives were siblings, then G; denotes the genotypic value for sib 1, E,
stands for the environmental value of sib 2, etc. If the relatives were parent and offspring,
then E; would represent the environmental values of parents, P, would denote the
phenotypic values of offspring, etc.

The straight, single-headed arrows (or paths) originating in the Gs and entering the
Ps denotes the possibility that genotypic values predict phenotypic values. The hs on
these two arrows quantify this effect. Strictly speaking, h is the correlation between
genotypic and phenotypic values®. Similarly, the path between the Es and the Ps denotes
the prediction of phenotypic values from environmental values, and e is the correlation
between E and P.

v

Ci

h;

Py Py

The double-headed arrow connecting the G, to G, denotes that fact that the
genotypic values of relatives may be correlated. The quantity g gives this correlation.
Similarly, the double-headed arrow connecting E; to E, allows for the possibility that the
environmental values of the two relatives are correlated, and h; (Greek lowercase eta)
denotes this correlation. Both gand h have the subscript i attached to them. This

" Technically, thisfigureis a path diagram. Observed variables are denoted by rectangles. Because we
measure phenotypes, the two Ps are encased in rectangles. Unobserved or latent variables are denoted by
circlesor ellipses. Because we cannot measure genotypic values and environmental values, the Gs and Es
areenclosed in circles.

8 In general, histhe standardized regression coefficient when phenotypic values are regressed on genotypic
values. This equalsthe correlation in the present case because it is assumed that G is not correlated with E.
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denotes the ith

type of
Table X.4. Values of gand h for different types of genetic relationship. The
and adoptive relationships. Under the equal environments values of gand h
assumptions, h for MZ twinswill equal h for DZ twins. With for different types
no selective placement, gfor adoptive relativesand h for of relationships
genetic relatives will be 0. are given in Table
' _ ' X.4. (The values
Relationship Notation g h of gin this table
MZ twins together mzt 1.0 h,, are derived from a
MZ twins apart mza 1.0 h.. simple, additive
DZ twins together dzt 5 |, genetic model.
Rl A [, | enionsnd
Siblings together sibst 5 Ngpy this model are
Siblings apart sibsa D | hge noted in the text
Parent-offspring together pot 5 Do box titled “The
Parent-offspring apart poa 5 Th, Problem with g
You should also
Grandparent-grandchild 99 25 he carefully read the
Uncle/aunt-nephew/niece uann 25 h text box on Fhe
Cousins cous A251 problems with h.)
cous We can
. . now use the rules
Adoptfve par@t-offsprl ng apo Ghoo Do of path analysis
Adoptive sblings asibs Qe | N developed by

Sewall Wright to
derive two central equations for the quantitative model. The first important equation is
that for the phenotypic variance. Because the quantitative model is expressed in terms of
standardized variables’, the variance of the phenotype will equal 1.0. The equation for
this variance is

1.0 =h*+¢%

The second equation expressed the correlation for any type of relative pair in terms of the
unknowns in Figure X.2 (i.e., g, h;, hand e). Let R; denote the correlation for the ith type
of relationship. Then,

R = th + hiez.

This equation may be used to find the correlation for any type of relationship listed in
Table X.4. Simply take the relationship that you want and substitute the appropriate g

and h; from Table X.4. For example, the correlation for MZ twins raised together will be

9 In this case standardized variables have means of 0 and standard deviations of 1. Because the varianceis
the square of the standard deviation, the variance of standardized variableswill also be 1.
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The Problem with g.

Here, a small digression is in order because the quantity gin the path model
requires some explanation. This quantity is the correlation between the genotypic
values of relatives. If the relatives are identical twins, then g= 1.0 because the twins
have identical genotypes. For fraternal twins and for ordinary siblings, the precise
mathematical value of gis not known. If the world of genetics were a simple place
where each allele merely added or subtracted a small value from the phenotype and
there were no assortative mating for the trait, then gwould equal .50. This value of g
is often assumed in the analysis of actual data, more for the sake of mathematical
convenience than for substantive research demonstrating that the assumptions for
choosing this value are valid.

If gene action is not simple and additive, then the value of gwill be something
less than .50. The two classic types of nonadditive gene action are dominance and
epistasis. Dominance, of course, occurs when the phenotypic value for a
heterozygote is not exactly half way between the phenotypic values of the two
homozygotes. Epistasis occurs when there is a statistical interaction between
genotypes. Both dominance and epistasis create what is termed nonadditive genetic
variance. For technical reasons, nonadditive genetic variance reduces the correlation
between relatives to something less than .50. The extent of the reduction depends
upon the type of relatives.

Assortative mating, on the other hand, will tend to increase the value of g.
When parents are phenotypically similar and when there is some heritability, then the
genotypes of parents will be correlated. The effect of this is to increase the genetic
resemblance of their offspring over and above what it would be under random mating.

What should be done under such complexities? The typical strategy of setting
gequal to .50 is not a bad place to start. If a trait shows strong assortative mating,
then more elaborate mathematical models can be developed to account for the effects
of nonrandom mating. The real problem occurs with nonadditive genetic variance.
When this is present, then the techniques described above can overestimate
heritability. This is another reason why heritability estimates should not be
interpreted as precise, mathematical quantities.

Rmzt = h2 + hmztez,
and the correlation for sibs raised apart will be
Rsibsa = 5h? + hsibsaez-
This cumbersome notation has been used deliberately because later it will reveal to us
some important assumptions about the twin and the adoption method.
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The Problem with h.

A small digression is useful here to explore the meaning of h. This parameter?
is usually interpreted as a measure of family environment but the term “family
environment” has a rather strange and esoteric meaning. It denotes much more than
the physical surroundings within a household and the interpersonal dynamics of the
family members. The :family environment” may actually exclude interpersonal events
between family members! The family environment in this context is defined as all
those factors, both inside and outside of the physical household, that make a pair of
relatives similar on the phenotype being studied. An example will clarify this
admittedly vague definition.

Suppose that relatives were pairs of young sibs. Siblings live in the same
neighborhood, usually attend the same schools, and often have friends in common. If
neighborhood, quality of school, and peers influence a phenotypic like achievement
motivation, then they are part of the “family environment” for siblings, even though
they are not physically located within the household.

Suppose that future research found that parents subtlety treat their children
differently by, say, encouraging the sib with the higher grades in school to study more
and take academics more seriously. This parental action will make pairs of siblings
different, not similar. Hence, it would not be considered a family environmental factor
even though from a psychological perspective it involves social interaction between
parents and their offspring.

An astute reader may question why anyone would regard h as a measure of
“family environment” when family environment is defined in such an odd way. There
is indeed considerable merit to this perspective, but the sad fact is that this definition
of h and the family environment has been used so much in the literature that it is
almost carved in stone. At the risk of offending many colleagues, | suggest a vigorous
sandblasting of that stone. Let us begin to view h for what it really is—the correlation
between the environments of relatives. It is an index of the environmental similarity
of relatives and measures the extent to which relatives are correlated because they
have some environmental factors in common. Family factors can make h high or can

make h low, just as factors outside the family can influence h.

Now let us look at the typical twin method that gathers data on MZ and DZ
twins raised together. There will be three equations for these type of data. The first is
the equation for the phenotypic variance,

1.0=h?+¢?%
The second and third are the equations for the MZ and DZ correlations, or
Rmzt = h2 + hmztez,
and
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Ryzt = 5h? + hdztez.
Because we have gathered data, we will have actual numbers for R,,; and for Ry,;. Now
recall some high school algebra. We have three equations with actual numbers on the left
hand side but four unknowns (h?, €2, hy,, and hgy) on the right hand side. Can we solve
for four unknown when there are only three equations? No. There must be at least as
many equations as there are unknowns to get a solution.

Behavioral geneticists resolve this problem by making the equal environments
assumption. This assumption states that the correlation between the environments for
MZ twins equals the correlation between the environments for DZ twins, or in
mathematical terms, h,c = hg,r. We will discuss this assumption in detail later on. For
now, we concentrate on the quantitative model. Let us make the equal environments
assumption, and let us denote the correlation between twins’ environments as hy, the
subscripts standing for twins raised together. Then the three simultaneous equations are

1.0 =h*+¢%,
Rmzt = h? + hye?,
and
Ryzt = .5h? + hye?.
Now we have three equations in three unknowns (h, e, and hy). The algebraic is left to the
reader. The solution is
h2 = 2(Rmzt - Rdzt),
e2=1-h?
and
_R_.-h?
htt - —ez_

For example, suppose that we gathered data on the personality trait of sociability
and found that R,y = .60 and Ry, = .45. Then we would estimate heritability as

h? = 2(Rmzt - Razt) = 2(.60 - .45) = .30.
We would conclude that 30% of phenotypic variance is attributed genetic variance or,
using more common sense language, that 30% of all the observable individual differences
in sociability can be traced in some way to genetic individual differences.

Because e is the correlation between environmental values and phenotypic values,
then e? is the environmentability or the proportion of phenotypic variance attributable to
environmental variance. For the hypothetical sociability data,

e?=1-h*=1-.30=.70.
Here, we would conclude that the environmentability is .70, so 70% of observed
individual differences in sociability may be traced in some way to environmental
individual differences among people.

Finally, we can compute the correlation between the environments of the twins.

R, - h? _60-.30

htt = 2

=43 .
e .70
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This value for hy suggests that there is an important correlation between the twin’s
environments. Perhaps, then, factors such as being raised in the same family, having the
same friends, etc. are important in producing environmental similarity among siblings for
sociability.

In the adoption design, the typical assumption made by behavioral geneticists is
that the environments of these relatives raised apart are uncorrelated and the genotypic
values for genetically unrelated relatives are uncorrelated. Formally, this assumption is
called the absence of selective placement. Once again, discussion of selective placement
will be deferred to concentrate on the quantitative model.

Consider now the equation for MZ twins raised apart. In Table X.4, the g value
for this relationship is 1.0 and the h; value is hy,,,, giving the equation

Rmza = h2 + hmzaez-
If there is no selective placement, then h,,,, = 0, so the equation reduces to
Rmza = hz-
In English, this means that the correlation between twins raised apart is a direct estimate
of heritability.

Let us now examine a typical adoption design. Here, we often observe two
correlations—that for biological parent and adoptive offspring and that for adoptive
parent and adoptive offspring. Using Table X.3, these correlations are

Ropo =-5h? + hppo€®
and
Rapo :gapoh2 + hapoez-

Added to these, we have the third equation for the phenotypic variance

1.0 =h*+¢%,
giving us three equations in five unknowns (h?, €, Nppos Ghpor AN Ngpo). 1f We make the
assumption of no selective placement, then hy,, = 0 and gy, = 0. The three equations are
now

Ropo :-5h2,

Rapo = hapoez-
and

1.0=h?+¢?
There are now three equations in three unknowns. Once again, the algebraic solution is
left to the reader. The results are

h2 = 2Rbpo,
e2=1-h?
and
h _ Rapo
apo —er .

For example, suppose that we gathered adoption data on interest in “blood sports” (e.qg.,
interest in watching boxing events, hunting, etc.) and found that the correlation between
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biological parents and their adoptees was .19 and the correlation between adoptive
parents and their adoptive children was .11. Then we would estimate heritability as
h? = 2Ryp, = 2(.19) = .38.
Environmentability would be estimated as
e?=1-h*=1-.38=.62.
And the correlation between the environments of adoptive parents and their adoptive
offspring would be

R 11
h,, = ——=—=163
e 62

The Quantitative Model: Overall Perspectives

Any student reading trying to cram this material before an exam is bound to be
bewildered. There are a large number of esoteric symbols, a giddy array of equations, and
quite a bit of hidden algebra. If you feel confused at this point, then you have lost the
forest for the trees. Let us step backwards for a moment to examine the big picture.

Step 1: quantitative behavioral genetics starts with a mathematical model that
gives equations for the correlation between various classes of relatives. Step 2: for any
actual data set, there are a limited number of relationships; hence, the number of
unknowns usually exceeds the number of equations given in step 1. Step 3: to solve this
problem, certain simplifying assumptions are made. Step 5: after these assumptions are
made, the problem becomes mathematically solvable.

Now, it takes little insight to recognize that the strength of any mathematical
model depends upon the extent to which the assumptions of that model are robust. The
term “robust” was deliberately used. A “robust” assumption is one that might actually
be violated, but the effect of violating the assumption is so small that substantive results
will not be altered. Consequently, to critically examine whether any of the above makes
practical sense, we must determine whether the two major assumptions—the equal
environments assumptions and the no selective placement assumption—are robust.

Assumptions in Behavioral Genetics Research
The Twin Method

The central assumption of the twin method is often called the equal environments
assumption. This assumption states that environmental factors do not make MZ twins
more similar than they make DZ twins similar. In terms of the mathematics of the model
in Figure X.2 and Table X.4, this assumption implies that h,,: = hg,r. To violate this
assumption, two very important phenomenon must both occur: (1) environmental factors
must treat MZ twins more similarly than DZ twins; and (2) that similarity in treatment
must make a difference in the phenotype under study. An example can help to illustrate.
Parents often dress identical twin children in similar outfits. All of us have seen a pair of
identical twin girls outfitted in the same dress or a pair of young MZ boys both wearing a
sailor suit. Parents frequently dress their DZ twins in identical attire but not nearly with
the frequency of parents with MZ twins. Consequently, if the phenotype under study
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were “fashion in young children,” then the equal environments assumption would be
violated and we should not use the twin method to estimate heritability.

Let us take this example a bit further. Suppose that the phenotype under study
was adult shyness. The first facet of the equal environments is violated because the MZ
twins in the sample will have been dressed more alike as children than the DZ twins.
However, the second facet of the equal environments assumption—that similarity in
treatment makes a difference in the phenotype under study—would probably not be true.
If it were true, then being dressed as a child in, say, a cowboy outfit as opposed to a
sailor suit would have an important influence on adult shyness. Hence, for the
phenotype of childhood fashion, the equal environments assumption would be violated,
but for the phenotype of adult shyness, the assumption may be valid.

Empirical data on the equal environments assumption suggests that the
assumption is very robust. That is, for most substantive human behaviors studies thus
far, the effects of violating the assumption are very minor. It is quite true that as children
MZ twins are often called by rhyming or alliterative names (e.g., Johnnie and Donnie),
that they are dressed alike more frequently than DZ twins, and that in general parents
treat them more as a unit that they do fraternal twins. However, several different types
of data suggest that this treatment does not influence substantive traits.

The first line of evidence is that actual zygosity predicts behavioral similarity
better than perceived zygosity. In the past, many parents of twins were misinformed or
make erroneous conclusions on their own part about the zygosity of their offspring®.
Consequently some parents raised their DZ twins as MZ twins while other treated their
MZ offspring as DZ pairs. The behavioral similarity of these twins is better correlated
with their biological zygosity rather than their rearing zygosity ().

A second line of evidence relies that even though on average parents of MZ
children treat them more alike than parents of DZ children, there is still strong variability
in the way parents of MZ pairs treat their children. Some parents accentuate their MZ
offspring’s similarity by making certain that they have the same hairstyle, clothing, brand
of bicycle, etc. Other parents will actually go out of their way to avoid treated their MZ
children as a unit and deliberately try to “individualize” them. However, those MZ twins
were treated as a unit were no more similar in their adolescent and adult behavior than
those who were deliberately individualized ().

The final and best line of evidence comes from studies of twins raised apart.
These twins are not raised in completely random environments, but they are certainly not
subject to the subtle treatments of being dressed alike as twins who are raised day-in and
day-out in the same household for all their childhood and early adolescence. As one
scholar of twins raised apart, James Shields, put it, “The importance of studying
separated twins is to demonstrate that the microenvironment of daily living in the same

19 A persistent myth, held even by some MDs, was that identical twins have one afterbirth while fraternal
twins have two afterbirths. What istrueisthat DZ twins always have two chorions (a sac enclosing the
anmion and amnionic fluid) while MZ twins may have either one or two chorions. Either type of twins can
have one or two &fterbirths.
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household is not solely responsible for the great similarity observed in twins raised
together” (Shield, personal communication, 1976).

If sibling resemblance were due mainly to the environment and if violation of the
equal environments assumption was the only major reason why MZ twins raised together
correlated higher than DZ twins raised together, then two predictions can be made about
separated twins. First, the correlation for separated twins should be small and close to O;
it should certainly be less than the correlation for siblings raised together. Second, the
correlation for MZ twins raised apart should be no different than the correlation for DZ
twins raised apart. The available data on twins raised apart are inconsistent with both of
these predictions (). First, for almost all traits that have been studied, the correlations for
twins raised apart have been substantial and significant. Indeed, MZ twins raised apart
are consistently more similar than biological siblings and DZ twins who are raised
together. Second, MZ twins raised apart correlate higher than DZ twins raised apart.

Taken together, all these lines of evidence suggest that the equal environments
assumption is indeed robust. The term “robust” was used quite deliberately. It means
that if there is any violation of the equal environments assumption, then the quantitative
effect of that violation is quite small and does not compromise the study of twins raised
together.

The Adoption Method

There are two critical assumptions about the adoption method—the absence of
selective placement and the representativeness of the adoptive families. Selective
placement occurs most often when adoption agencies deliberately try to place adoptees
with adoptive parents who resemble the adoptee's genetic parents. Like the equal
environments assumption in the twin method, the critical issue is not whether selective
placement occurs—it does—but whether the selective placement influences the trait in
question.

Most contemporary adoption studies report strong selective placement for
race/ethnicity and for religion (). Placement for religion is seldom done deliberately. It is
mostly a secondary consequence of different religious denominations supporting their
own adoption agencies. Catholic Social Services, for example, deal mostly with Catholic
unwed mothers and place children into Catholic homes. Similar venues occur for other
religiously affiliated agencies.

There is moderate selective placement for certain physical characteristics,
especially height. The rationale here is to avoid placing a child into home where the child
might "stick out like a sore thumb." The empirical evidence suggests that for behavioral
traits selective placement is very small or nonexistent. However, one must be cautious in
interpreting adoption data on phenotypes like attitudes toward abortion that may
correlate strongly with religious affiliation.

The second assumption about the adoption method concerns the
representativeness of the adoptive families. Adoptive parents are screened—sometimes
intensively—on issues of positive mental and physical health, the ability to financially
support a child, and the probability of providing a safe and secure home for the child.
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Researchers mistakenly assume that the screening process is for wealth, for positive
mental health, etc. Instead, the process is against extreme poverty and against serious
psychopathology. As a result, mean income of adoptive families is not very different
from average income in the general population—it is just that the lower tail of the income
distribution is missing.

Selection against psychopathology is a more serious matter. Parental alcoholism,
criminal behavior, psychosis, drug abuse, and several other factors exclude a parent from
adoption. As a result, there may be a restriction in range in the environments provided by
adoptive parents, making it very difficult to detect a correlation between adoptees and
their adoptive relatives. Hence, one should be cautious in interpreting low correlations
among adoptive relatives as evidence for a lack of family environmental influence on the
trait. Once again, one must consider restriction in range on a trait by trait basis. It may
be very important for phenotypes like antisocial behavior, but rather weak for
personality traits.

The Twin Method: Another Quantitative Model

There is a second quantitative model used for twin data. It has the same
assumptions as the model given above, but it expresses the information in a different way.
This model subdivides environmental values into two parts, common environmental
values and unique environmental values. Common environmental values are all those
environmental factors that influence the trait of interest and at the same time make siblings
raised together similar on the trait of interest. Being raised in the same home, going to the
same school, having friends in common are all factors that would be potentially included
in the common environment. Be careful not to confuse common environment with simple
events and circumstances that siblings share when they are raised together. Sharing is
necessary but it is not sufficient to be in the common environment. The shared
environment must also influence the trait and make siblings similar. For example, siblings
raised together live in the same neighborhood. If neighborhood is a factor influencing the
phenotype of juvenile delinquency, then neighborhood would be a common environmental
factor for that phenotype. On the other hand, if neighborhood has no influence on the
development of schizophrenia, then neighborhood is not a common environmental factor
for the phenotype of schizophrenia. Although sibs share neighborhood, their shared
neighborhood does not influence schizophrenia and does not make them similar for
schizophrenia.

The unique environment is defined as all those environmental factors that influence
the trait and make siblings different from each other on the trait of interest. Individual
learning experiences, having different friends, being treated differently by parents are all
aspects of the unique environment of a phenotype provided that they influence that
phenotype. Note that when phenotypes are not measured with perfect accuracy
(something that happens with virtually every behavioral phenotype), then measurement
error is included in the unique environment.

In this model, h remains the correlation between genotypic values and phenotypic
values, c is the correlation between common environmental values and phenotypic values,
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and u is the correlation between unique environmental values. The meaning of g remains
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the same—the correlation between the genotypes of sibs. The quantity g is the
correlation between the common environments of sibs. For sibs raised together, a; = 1.0
but for sibs raised apart a; = 0.

The equation for the phenotypic variance is

1.0=h?+c?+ u?,
where h? s the heritability, ¢? is the common environmentability, and u? is the unique
environmentability. The correlation for MZ twins raised together is
Ry, = h? + ¢?
and the correlation for DZ twins raised together is
Rq; = .5h% + ¢2.

Again, we have three equations in three unknowns, so with some algebra, it can be shown
that we can estimate heritability, common environmentability, and unique
environmentability as

h2 = 2(Rmz - Rdz),
Cz = 2Rdz - Rmz,
and
u?=1- Ry,
In the example of sociability used above heritability is
h? = 2(Ry; — Rgz) = 2(.60 - .46) = .30
which is the same answer that we calculated before. Indeed, this is as it should be because
the equation for h? is the same in the two models. The estimate of common
environmentability is
¢? = 2Ry, — Rz = 2(.45) - .60 = .30 .
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This means that 30% of the individual differences in observed sociability are due in some
way to those environmental factors that sibs share and make sibs similar in sociability.
The estimate of unique environmentability is
u?=1-Rp,=1-.60=.40.

Thus, 40% of observed individual differences in sociability may be traced in some way to
the unique environment—all those unique, idiosyncratic experiences that influence
sociability and make sibling different, including errors of measurement.

There is no substantive difference between the current model and the one outlined
above. Indeed, the two models extract the same information but express it in different
ways. With some algebra (not shown here), it can be shown that

and

c® = he’.
This is reasonable because the current model merely separates the total
environmentability (¢%) into two components (c® + u?) and expresses the information
about the environment in terms of those two components.

Advanced Topics:

In this section, mathematical models are developed for the computation of
different types of genetic variance. Several substantive points about genetic variance
components and their effect on the analysis of behavioral data are also made. The reader
uninterested in the mathematics can read the text boxes to gain the substantive
conclusions.

Quantitative geneticists partition total genetic variance into three types—additive,
dominance, and epistatic variance. Additive genetic variance measures the extent to which
phenotypic individual differences are predictable from the additive effects of allelic
substitutions. Dominance genetic variance is variance associated with dominant gene
action—the fact that the genetic value for a heterozygote is not exactly the average of the
genetic value of the two homozygotes. Epistatic genetic variance is the variance
associated with the statistical interaction among loci—gene by gene interaction as it is
often called..

Additive and dominance variance may be illustrated by examining a single locus,
designated here as M locus, with two alleles M; and M,. The additive effect of allele M, is
the average change in genotypic values seen by substituting an M, allele for an M, allele.
To find this effect, simply construct a new variable, called X; here, that equals the number
of M, alleles for the individual’s genotype. For genotype M;My, X; = 0; for M;M,, X; =1,
and for M,M,, X; = 2. To account for dominance, construct another new variable, X,,
with values of 0, 1, and O for, respectively, genotypes M;M, M;M,, and M,M,. Table
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X.X provides hypothetical data set up with the new variables. It is assumed that the
phenotype is scaled so that the population mean is 100 and the population standard

deviation is 15.
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Table X.X. Hypothetical data for estimating genetic variance
components at a single locus.

Numerical Codes:
Genotypic | Additive | Dominance
Genotype | Frequency Value =X =X
M; M, .16 94 0 0
M;M, 48 96 1 1
M, M, .36 108 2 0

If we had actual data on individuals we would calculate the additive and dominance
effects and their variance components by performing two regression. In the first, we
would regress the phenotypic score, noted as Y herein, on X;. The squared multiple
correlation from this regression equals the additive heritability (3 ), the proportion of
phenotypic variance associated with additive gene action at this locus. For the data in
Table X.X, R? =.137 = hZ , s0 13.7% of phenotypic variance is predicted from additive

gene effects at this locus. The regression line for this equation will be the strait line of best
fit that through the three genotypic values for the three genotypes. It is illustrated in
Figure X.X.

The second regression model would be of the form

Y =b, +b X, +b, X, .

The intercept, by, will equal the genotypic value for M;M;. The regression coefficient b,
equals the average effect of substituting allele M, for M; in any genotype. Finally, the
coefficient b, equals the genotypic value of the heterozygote less the average of the
genotypic values of the two homozygotes. This measures dominant gene action. For the
present example, by = 94, b, =7, and b, =-5. The value of coefficient b, informs us that
on average one M, allele increases phenotypic values by 7 units. Because the value of b,
is not 0, we can conclude that there is some degree of dominance. Because b, = -5, we can
conclude that there is partial dominance for allele M; so that the genotypic value of the
heterozygote is moved 5 units away from the midpoint of the two homozygotes and
toward genotype M;M;.

™ This coding system can be used to account for any number of alleles at alocus. For example, to model
additive effects of alele M;, construct another variable giving the number of M; alleles in a genotype.
There would then be three dominance variables, one for the heterozygote M;M,, a second for the
heterozygote M ;M,, and the third for the heterozygote M ,M . For each of the three dominance variables, the
appropriate heterozygote would have avalue of 1 and all other genotypes would be assigned a value of O.
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The multiple correlation from this model equals the additive heritability plus the
dominance heritability (h; +h3). For the present example, R? = .162. Dominance

heritability can be found by subtracting the R? from the first regression model from this
value: h3 =162- 137 =025 .

The regression coefficients can also be used to calculate additive and dominance
heritability. Let p; denote the frequency of allele M; and p,, the frequency of M,. Then,
h,i =2 plpZ[bl +(p1 - pz)bz]2 )
and
hs =(2p,p;b,)* .

To examine epistasis, consider the N locus with alleles N; and N,. Just as we
created two new variables for the M locus, we could also create two new variables to
model the additive effect and the dominance effect at this locus. Call these variables X;
and X,. For genotypes N;Ni, N;N,,and NoN,, the respective values for Xz will be 0, 1,
and 2; the respective values for X, would be 0, 1, and 0. The coding for the additive and
the dominance effects at both the M and the N loci are given in Table X.X.

Table X.X. An example of numerical coding to calculate genetic variance components for
two loci with two alleles at each locus.

Numerical Codes:
| | Interactive

M Locus: N Locus: A*A | A*D | D*A | D*D
Genotypes: Add. | Dom. | Add. | Dom. | X;*X3 [ Xi*Xs | Xo*X3 [ Xo*X,4

Xy X, X3 X, Xs Xs X, Xg
M;M;N;N; 0 0 0 0 0 0 0 0
M;M;N;N, 0 0 1 1 0 0 0 0
M;M;N,N, 0 0 2 0 0 0 0 0
M;M,N;N; 1 1 0 0 0 0 0 0
M;M,N;N, 1 1 1 1 1 1 1 1
M;M,N,N, 1 1 2 0 2 0 2 0
M;M,N;N; 2 0 0 0 0 0 0 0
M,M,N;N, 2 0 1 1 2 2 0 0
M,M,N,N, 2 0 2 0 4 0 0 0

In regression, an interaction between two predictor variables is modeled by
creating a new variable that is the product of the two predictor variables and entering this
variable. Genetic epistasis is modeled in the same way. Multiplying the additive variable
for the M locus (X;) by the additive variable for the N locus (X3) gives a new variable (Xs
in Table X.X) that geneticists call additive by additive epistasis. The variance associated
with this is termed additive by additive epistatic variance.
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There are two different ways to model the interaction between an additive effect
at one locus and a dominance effect at a second locus. First, we could multiply the
additive variable for the M locus by the dominance variable for the N locus. This new
variable is given as Xg in Table X.X. The second way is to multiply the dominance
variable for M by the additive variable for N, giving variable X; in Table X.X. Together
variables Xs and X; model additive by dominance epistasis and the variance associated
with these two variables is called additive by dominance epistatic variance.

The final interactive term is the product of the two sominance variables for the M
and N loci. Itis given as Xg in Table X.X. This is dominance by dominance epistasis and
it associated variance is dominance by dominance epistatic variance.

Estimation of epistatic variance components proceeds in the hierarchical manner
described previously for additive and dominance variance at a single locus. The regression
models and their associated variance components are listed in Table X.X. To calculate the
proportion of phenotypic variance associated with any single effect, one simply takes the
R? for the model and subtracts from it the R? of the model above it in Table X.X.

Table X.X. Regression models for estimating heritability components.

Model: Heritability Component (R%):
Y=X+X; Additive = h;
2 Y=Xi+ X+ X3+ X4 Additive + Dominance = h; +h?2
Additive + Dominance + A*A Epistasis
3 Y =X+ X+ Xg+ X+ Xg = hi +hZ +h%,

Additive + Dominance + A*A Epistasis
41 YSX+Xo+ X+ X+ Xs+Xe+X; | + A*D Epistasis = hi +hi +hi, +h},

Additive + Dominance + A*A Epistasis
51 Y=X{+Xo+ X3+ X4+ X5+ Xg+ X7+ Xg + A*D Epistasis + D*D Epistasis =
ha +h5 +hi, +hip +hg,

For a numerical example consider the genotypic values presented in Table X.X
measured on a scale such as 1Q with a population mean of 100 and a population standard
deviation of 15. In calculating these numbers, the frequency of allele M, was set to .60 and
the frequency of N, was .70. Variables X; through Xg were constructed as in Table X.X,
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Table X.X. Genotypic values for two
genotypes.

NN, NN, N,N, Mean

M,M, [ 93.00 | 103.78 | 114.37 | 108.00

M;M, | 93.00 [ 95.00 97.41 96.00

M;M; [ 93.00 | 94.00 94.18 | 94.00

Mean | 93.00 | 98.00 [ 103.00 | 100.00

and the regression models in Table X.X were fitted to the data. The results of the
regression models and the heritability components given in Table X.X. In this table, the
heritability due to dominance variance (h3 ) equals the R? for model 2 less the R? for
model 1 or .20881 - .18321 = .0256. The heritability due to additive by additive epistasis
(hi. ) equals the R? for model 3 less the R? for model 2 or .23854 - .20881 = .0297, and so
on.

Table X.X. Components of heritability for the data in Table X.X.
Heritability
Model: R? Component
1 Y=X;+ X, 18321 hi =.1832
2 Y=X;+ Xo + Xa + Xy .20881 h2 =.0256
3 Y=Xi+ X+ X3+ X3+ Xq .23854 hi, =.0297
4 Y= Xy + Xp+ Xg + Xy + Xs + Xg + Xy 24309 hZ, =.0046
5| Y=Xi+Xo+ Xg+ Xg+ Xs+ X+ Xo + Xg | .24314 hZ, =.0001

Notice how the hierarchical decomposition of genetic variance tends to extract large
amounts for the additive variance and progressively smaller amounts for the dominance
and epistatic variance.

TEXT BOX: Gene Action and Genetic Variance Components.

Gene action is requires for a variance component. For example, without some
degree of dominant gene action, there can be no dominance variance. However, genetic
variance components are a function of both gene action and genotypic frequencies.
Consequently, one can have strong gene action, but if the genotypic frequencies are just
right, then the variance component associated with it can be very small. To illustrate this
consider the two equations given in the text to compute the additive and dominance
variance at a single locus from the regression parameters,
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h,i =2 plpZ[bl +(p1 - pz)bz]2 )
and
hs =(2p,p;b,)* .
Let us assume that allele M, shows complete dominance to allele M;. In this case, b, = b;.
Let us substitute b, for b, in the above equations and derive the ratio of additive to
dominance variance,

hi — 2p1p2[b1+(p1' pz)bl]2
hy (2p,p;b,)’°
which reduces to
WPY
hy P

Even though we have modeled a completely dominant gene, this equation tells us
that the ratio of additive to dominance variance depends only on the allele frequencies!
When allele frequencies are even (i.e., p; = p») then the ratio is 2 and we will have twice as
much additive variance as dominance variance. As the frequency of the recessive allele
increases, p; becomes larger and larger and there is more and more additive variance
relative to dominance variance. This tells us that rare dominant alleles have large additive
variance relative to their dominance variance.

As p; becomes smaller and smaller relative to p,, the ratio will get less than 1 and
approach 0. Thus, rare recessive alleles have large dominance variance relative to their
additive variance.

TEXT BOX: Hierarchical Decomposition of Genetic Variance Components

Return to the single locus with two alleles. In performing the regression to
calculate additive genetic variance, we fitted a regression line that minimizes the squared
differences between the observed genotypic values and those predicted by the regression
line. This procedure is deliberately geared to maximize additive genetic variance (the
variance associated with the regression line) and minimize residual genetic variance (the
dominance genetic variance).

The hierarchical decomposition of genetic variance components follows this
maximization/minimization algorithm. In the polygenic case, after additive variance has
been extracted the procedure will try to maximize dominance genetic variance and
minimize the residual genetic variance (epistatic variance). After additive and dominance
variances have been extracted, the regression will maximize the additive by additive
epistatic variance and minimize the other epistatic variance components.

As a consequence, additive genetic variance tends to be the largest component
with continually smaller and smaller components following. There is no mathematical
guarantee that this will always happen, but the pattern is almost always expressed in
biologically plausible models of gene action. The major exception to this rule is the
phenotype due to rare recessive alleles at a single locus.
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Any human behavioral trait is are probably influenced by several different genes.
It is unlikely that nonadditive gene action (dominance and epistasis) are completely
absent at all loci that contribute to behavior. Would anyone care to bet that the genotypic
value of the heterozygote lies exactly at the midpoint of the two homozygotes for every
single locus operating in the central nervous system? But the hierarchical decomposition
of variance for polygenic traits is likely to generate considerable additive variance with
relatively small dominance and epistatic variance. The net result is that the typical
assumption used in fitting genetic models to human behavioral data—that all genetic
variance is additive—will give the wrong answer but will not give a substantively
misleading answer.

To illustrate, let us examine what twin correlations would look like using the
variance components given in Table X.X. The identical twin correlation would be
R, =hZ+h2+h?, +hZ +h3 =243
and the fraternal twin correlation would be
R = % + 716 + 7hiu + Shi, + g, =106
(See Kempthorne ()for the coefficients for nonadditive effects for relatives other than MZ
twins.) If we estimated heritability with the traditional formula that assumes no additive
genetic variance, we would have
h?2 =2(R,, - R,) =2(243- 106) =274 .
Although the estimate of .274 is not correct, it is not very different from the total
heritability of .243.



