QMIN Coding - 1.1

1 Coding Categorical Variables

1.1 Why code categorical variables?

Why go to the trouble of coding ANOVA factors? Let us illustrate via example. One of
the major neurotrophins, BDNF (brain-derived neurotrophic factor) protects certain types of
neurons from cell death. A lab has established that two types of amphetamine can cause cell
death in certain types of neurons and is interested in whether BDNF can prevent this. They use
microinjections to infuse the targeted brain area in rats with these two different types of
amphetamine and a vehicle control. Along with this infusion, they also add four difference doses
of BDNF—0, 1, 10, and 100 ng per volume. After a suitable time, the rats are sacrificed, their
brains dissected, and slices of the region are assessed for neuronal death.

'This design can be looked upon as a two way ANOVA. The two factors are type of Drug
(with three levels—Control, Amphetaminel, and Amphetamine2) and Dose of BDNF which has
four levels. Suppose that the lab has already studied 8 rats per cell and wants to get a
preliminary look at the data. Hence, they plot the means (see Figure 1.1) and perform a two-way
ANOVA on the data, the results of which are given in Figure 1.2.

The initial plot of the means is very encouraging. The two amphetamine groups have
higher cell-death indices than the controls, and there appears to be a linear decrease with the
category of BDNF dose. The error bars, however, are quite large.

The results of the ANOVA, however, suggest that the study is not ready for publication.
There is a trend towards significance for Drug, but the error bars in Figure 1.2 are too large to get
even a meaningful trend for Dose. Faced with such data, the lab decides to test several more rats
per cell'. Given that there are 12 cells in this design, adding just one rat per cells means 12
different surgeries and assays. Ask yourself, how much time might it take to add just one rat per
cell?

The importance of coding is that this extra effort might be wasted time. Let us explore
this issue for a minute by recalling the purpose of the study. The lab has already established that
both types of amphetamine produce cell death. Hence, they know that both amphetamine groups
will differ from controls. This knowledge can be used to construct an independent variable for
the analysis that effectively tests whether the average of the two means for the amphetamine
groups differs from the control mean®. (We outline the mechanics of how to do this later in
Section X.X. Right now, we only want to convince you to read that.)

Let us call this new independent variable “Contrast]” because the coding scheme is
called contrast coding. We will also construct a second new independent variable, called
“Constrast2,” that tests whether the means of the two amphetamine group differ from each other.
We now rerun the analysis treating Contrastl and Contast2 as continuous variables. The results
of this GLM are given in Figure 1.3.

' The proper statistical course of action is to an a posteriori power anatysis (a topic discussed later in Section X.X) to
determine the desired sample size. .
* The means referred to here are the marginal means for the Control and the two amphetamine groups.
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Figure 1.1 Mean (+/- 1 SEM) cell death index for as a function of type of drug and dose of
BDNF.

iy
Drug:
"""" Amphetaminel
== Amphetamine2
os = Control

20
3]
wn 5
— L - -T7

N
! e ™
e AR N
+ow . R
o L - \ \--I- g
' W -
"QVU} e '._" g - - - ==
k=t T --4
_______ —— -~

= B L e —
] I T -~ .
ol B ~
Q (S \_ ...........
= 1 an,
T .
- e N
o ]
& =
= A

" .

5

] 1 10 109

Dose of BDNF (ngsfvolume)

Now, variable Constrast! is significant. This implies that the average of the two
amphetarmine means depicted in Figure 1.1 differs significantly from the Control mean.
Contrast2, however, is not significant. Hence, there is no evidence that the mean for
Amphetaminel differs from that for AmphetamineZ2.

Before discussing the reason for this, compare the omnibus F statistic, it p value, and the
R’ of the classic ANOVA (Figure 1.2) to those statistics from the GLM using the two contrast
coded variables (Figure 1.3). The two sets of statistics are identical. Now compare the §5, MS,
F, and p for variable Dose in the two Figures. These statistics are also identical. Now, add
together the SS for Contrastl and Contrast2 in Figure 1.3 and compare the result to the §S for
Drug in the classic ANOVA. They are the same number. Finally, add the S§ for the
Contrast1*Dose interaction to the $S for the Contrast2*Dose interaction in Figure 1.3. Compare
this result to the SS for the Drug*Dose interaction in Figure 1.2. Once again, they are the same.



QMIN Coding - 1.3

Figure 1.2 Classic ANOVA results on BDNF data set.

Dependent Variable: Cell Death

Sum of
Source DF Squares Mean Square F Value Pr > F
Model 11 3724.49500 338.59045 0.98 0.4729
Error 84 29084.42500 346.24315

Corrected Total 95 32808.92000

R-Sguare Coeff Var Root MSE Cell Death Mean
0.113521 25.37690 18.60761 73.32500
Source DF Type III SS Mean Sgquare F Value Pr > F
Drug 2 1689.135625 844.567812 2.44 0.0934
Dose 3 1823.155000 607.718333 1.76 0.1620
Drug*Dose 6 212.204375 35.367396 0.10 0.9%60

Figure 1.3 GLM results using contrast codes on the BDNF data set.

Dependent Variable: Cell Death

Sum of
Source DF Sguares Mean Sguare F Value Pr > F
Model 11 3724.49500 338.59045 0.98 0.4729
Error 84 29084.42500 346.24315
Corrected Total 95 32808.92000
R-Square Coeff var Root MSE Cell Death Mean
0.113521 25.37690 18.60761 73.32500
Source DF Type IIT SS Mean Square F Value Pr > F
Contrastl 1 1626.9229695 1626.922969 4.70 0.0330
Contrast2 1 62.212656 62.212656 0.18 0.6727
Dose 3 1823.155000 607.718333 1.76 0.1620
Contrastl*Dose 3 207.377656 69.125885 0.20 0.8964
Contrast2*Dose 3 4.826719 1.6085806 0.00 0.9996

This similarity is far from coincidental. The contrast coding is actually performing the
same ANOVA in Figure 1.2-it is just expressing the hypotheses is a different form, one that
both increases statistical power and provides more information about group differences. Recall
the logic of ANOVA. In the classic ANOVA, the null hypothesis states that the means for all
three groups are sampled from the same hat of means. The alternative hypothesis, however,
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encompasses two different situations. Alternative hypothesis 1 is that each of the three means is
sampled from a different hat of means. Alternative hypothesis 2 states that one mean is sampled
from one hat of means, but the other two means come out of another hat of means. This
hypothesis, however, comes in three forms: (2a) the Control mean comes from one hat and the
two amphetamine means from the other hat; (2b) the Amphetaminel mean comes from one hat
and the Control and Amphetamine2 mean from the second hat; and (2¢) the Amphetamine?2
mean is from the first hat and the Control and Amphetaminel means from the second hat.

In a very loose sense, the I test for Drug in the classic ANOVA has no clue as to the
relative likelihood of alternative hypothesis 1 and the three forms of alternative hypothesis 2.
Hence, this statistic tries to test something akin to the “average” of these four alternative
hypotheses. In developing the coding scheme, we capitalized on the prior results of this lab by
suspecting that if any mean is sampled from a different hat, it will most likely be the Control
mean. Hence, we considered alternative hypotheses 2b and 2c¢ as unlikely and developed the
coding scheme to examine the relative merits of alternative hypothesis 1 versus alternative
hypothesis 2a. The result was a significant increase in statistical power.

Before moving on, note that both the classic ANOVA and the GLM with contrast codes
treated variable Dose as if it were truly categorical. Figure 1.4 illustrates the effect of using the
quantitative information in Dose by treating it as a continuous variable. The actual variable was
Logio(Dose + 1).

Figure 1.4 GLM results using contrast codes and a quantitative variable for dose of BDNF.

Dependent Variable: Cell Death

Sum of
Source DF Squares Mean Sgquare F Value Pr > F
Model 5 3352.20203 670.44041 2.05 0.0783
Error 90 29456.71787 327.29687

Corrected Total 95 32808.52000

R-Sqgquare Coeff Var Root MSE - Cell Death Mean
0.102173 24.67282 18.08135 73.32500
Standard

Parameter Estimate Error t Value Pr > |t
Intercept 77.57618720 2.720302 28.52 <.0001
Contrastl ~3.95676243 1.923544 -2,086 0.0426
Contrast2 ~0.82375000 3.331676 -0.25 0.8053
Logl0 Dose -5.08098274 2.387603 -2.13 0.0361
Contrastl*Logl(_Dose 1.24996105 1.688291 0.74 0.4610
Contrast2*Logl{_Dose ~-0,19384512 2.924205 ~0.07 0.9473

Now both Contrast] and the dose of BDNF are significant. Despite the large error bars in
Figure 1.1, the analysis now suggests that the results are “publishable.” The time spent pointing
and clicking in a modem statistical package to get these results is trivial—about a minute. How
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much time do you think it would take to add animals to achieve statistical significance using the
classic ANOVA?

1.2 Methods of Coding

1.2.1 Coding According to a Mathematical Model

Sometimes existing mathematical model that can be vsed to code groups. Consider the
protein kinase C-y (PKC-gamma) data given previously in Section X.X. To recap, this data set
involved mice that are genetically identical save for their genotypes at the PKC-~gamma locus.
Genotype ++ is the homozygote for the wild-type allele, genotype +- 1s heterozygote with one
wild-type allele and one knockout allele, and genotype -- 1s homozygous for two knockout
alleles. The dependent variable is percentage of time spent in the open arm of an elevated plus-
maze. Low scores on this variable are assumed to be associated with high levels of anxiety.

There is a standard model for quantitative data on a single genetic locus. Figure
1.5presents this model using the notation of Falconer (19xx). Here m is the mathematical
midpoint between the means of the two homozygotes. Parameter a gives the distance between
the midpoint and means of the two homozygotes. Hence, the mean of the A1A; homozygote
equals m - a and the mean of the A2A; homozygote 18 m + a. Parameter d gives the distance of
the heterozygote from the midpoint, so mean for this genotype 1s m + d.

Figure 1.5 A model for the analysis of a quantitative phenotype for a genetic locus with two
alleles, Al and A2.

A%Al | AllAz AzlAz
| | | |
m- d m m+d m+ a

Table 1.1 gives the genetic model along with a coding scheme for two independent
variables—X, and X,—derived from the genetic model. The overall equation to predict the mean
of the ith genotype is

EK a+ﬁ1XI1 +ﬁ2Xi2 "
Read this equation as “the mean for the ith genotype (Y, ) equals a constant () plus the slope of

the first independent variable () times the value of the ith genotype on the first independent

variable (X;;) plus the slope for the second independent variable (/) times the value of the ith
genotype on the second independent variable (Xjp).”
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Table 1.1
Coded Independent Variables:
Genetic Regression
Genotype: | Model: X, X; Model:
et m-a -1 0 - B
+- m+d 0 1 a+
- m+a 1 0 a+ b

The mean for a given genotype may be found by substituting the values of the two coded
independent variables for that genotype into this equation. For example, the mean for genotype
A+ 18

Y . =a+ D+ B,0=a-4.
Continuing with this logic gives the genotypic means under the column in Table 1.1 labeled
“Regression Model.” Comparing this column to the one for the genetic model, we see that the
intercept «restimates the genetic parameter m, the regression coefficient £ estimates the genetic
parameter a, and the regression coefficient /3, estimates the genetic parameter 4.

1.2.2 Dummy Coding

Dummy codes assign numbers of 0 or 1 to groups. When there are k groups (or, more
technically, k levels to an ANOVA factor), then there can be as many as (k — 1) dummy codes.
In a regression using dummy-coded independent variables, the intercept gives the mean for one
group (called the reference group herein) and the slope for a dummy-coded group gives the
difference in the means of the reference group and the group given a code of 1.

To examine this statement, plug the dummy code scheme into the following equation for
each group

ﬁxa-*—ﬁlei-}-ﬁ’lXZf+"'ﬁKin‘ | (X.D
Here f’:equals the mean on the dependent variable for the i" group and Xj; 1s the value of the it

dummy code for the i group. An example can illustrate this principle without all those
confusing i"™s and j™s.

In-the example given above, there are three genotypes, so the analysis has three groups
(i.e., k = 3). Hence, we can construct up to 2 dummy code vartables. When the groups have a
rank order to them—as they do in the case of genotypes——then one informative dummy coding
system is to let the second group equal 1 on the first dummy code, the third group equal 1 on the
second dummy code, the fourth equal 1 on the third dummy code, and so on. The reference
group in this case will be the first group. o

We apply this scheme by letting genotype ++ be the reference group. Let X; denote the
first dummy code for the genotypes. We will set X, to 1 for genotype +-; otherwise X; will equal
0. Let X; denote the second dummy code. Here, X, = 1 if the genotype is --; otherwise, X = 0.

Using Equation (X.1), the mean for the 4+ or reference genotype will equal

Y. =a+[0+p60=c.
Hence, the intercept in the regression output will equal the mean of the ++ genotypes.

The mean for genotype +- may be found by plugging its values on X; and X; into
Equation (X.1}. The result is
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Y =a+Bl+B0=0+f.
Because «equals the mean for genotype ++, we can substitute that mean into the above equation
in place of e and solve for £,
Y, =a+f =Y. +8,
s0

[j’l =Y, . Y++ -
In short, the regression coefficient f; equals the difference in means between genotype +- and
wild type genotype ++. If 3 is statistically different from 0, then there is a significant difference
between the mean for the heterozygote and the ++ homozygote.

Finally, the equation for the mean for genotype ++ will be

Y =a+B0+B1=a+p,.
Without reproducing the algebra,
ﬁz = }_;mm - K+ .

If /3 is significant, then the difference in means between the two homozygotes is significant.

Clearly, dummy coding is a useful scheme when one level of a factor is a control. By
letting the control level be the reference level, the dummy coded variables effectively test the
mean difference between any other level of the factor and the control level. In the PKC-gamma
example, by letting the wild type, ++ genotype be the “control,” then parameter /3 tests the effect
of knocking out one pkc-gamma allele and /3 tests the effect of knocking out both alleles.

1.2.3 Contrast Coding

Contrast coding creates a new variable by assigning numeric weights (denoted here as w)
to the levels of an ANOVA factor under the constraint that the sum of the weights equals 0, or

k
> w, =0. (X.X)

Later, we consider how to develop two or more contrast coded variables, but for the moment, let
us simply consider the three weights that can be used in the present example to create a single
contrast-coded variable.

As in dummy coding, the meaning of any contrast coded variable 1s expressed in terms of
the group means. Hence selection of the numbers assigned to the levels of the ANOVA factor
should reflect meaningful comparisons of group means. For an ANOVA factor with k levels, the
overall null hypothesis tested by a contrast is

k —— —
> wY =wY +wY, +--wY, =0, (X.X)
i=1

where, as before, Y, denotes the mean on the dependent variable for the ith level of the ANOVA

factor. The alternative hypothesis is that the weighted sum of the means is not equal to 0.

To understand contrast coding, it is helpful to have a numerical example. Table 1.2
presents the sample sizes, means, and standard deviations for the three PKC-gamma genotypes.
We use these data below.
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Table 1.2 Descriptive statistics for the PKC-gamma data set.

Genotype: N Mean St. Dev.
++ 15 8.62 6.40
+- 15 8.66 6.03
-- 15 19.39 9.03

Coding - 1.8

Table 1.3 gives five examples of contrast codes that could be used for the PKC-gamma
genotypes. All five of these codes meet the mathematical necessity that the weights sum to 0.
To derive null hypothesis tested by a contrast coded variable, do the following three algebraic
steps: (1) multiply each group mean by its coefficient; (2) add the terms together; and (3) equate
the sum to 0. For example, for the first set of contrast codes in Table 1.3, we have

O=—1F +1¥_+0V_=Y_-Y_,

so this contrast code tests for the difference in means between the heterozygote and the wild type

homozygote. In terms of the numeric values of the means, this code tests whether
0=8.66-8.62=.04.

Of course, the number 0 is not equal to the number .04. Instead, the test 1s whether the observed

difference in means (.04) is within sampling error of 0.

Table 1.3 Example contrast codes for the three levels of PKC-gamma genotype.

Genotype:
Example: ++ +- --
1 -1 | 0
2 1 0 -1
3 2 -1 -1
4 0 1 -1
3 -1 2 -1

For example 2 in Table 1.3, the equation is
0=1Y_ +0Y, _+1¥_=Y, -V _,

and 1t tests for the difference in means between the two homozygotes. Specifically, it assesses
the null hypothesis that 0 =862 -19.39 =-10.77. In substantive terms, this code asks whether a
difference in means of -10.77 units is significantly different from 0.

Example 3 gives

0=2F, -7 -1 =7, -T=2=,

This tests whether the mean of the wild type homozygotes differs from the average of the
heterozygote and the knockout homozygote means. Numerically, this is equivalent to

0=862-200F1939 <105

Example 4 gives _
0=Y_-Y

p—

the difference between the heterozygote and the knockout homozygote means. Example 5,
giving
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: 2
tests whether the heterozygote differs from the average of the homozygote means (i.e., a test for
genetic dominance).

Many other codes meet the mathematical requirement that the weights sum to 0 but do
not give meaningful comparison of the genotypic means. We could, for instance, assign the
weight -5 to genotype ++, -12 to genotype +-, and 17 to genotype --. The resulting null
hypothesis, however, 1s

0=-5Y,, ~12Y, +17Y .
This null hypothesis makes little sense. Clearly, substantive issues must prevail over
mathematical ones in developing contrast codes.

1.2.3.1 Contrast Codes: Comparison to a Control Group

An investigator who spends time and resources gathering experimental data rarely is
completely atheoretical about the anticipated mean differences between the control and the
treatment (i.e., experimental) groups. The omnibus F statistic from a classic ANOVA, however,
is completely atheoretical about mean differences. Hence, one of the most important uses of
contrast coding is to compare the means of treatment groups te those of one or more control
groups.

Let us first examine the simplest case—i.e., when the means of all treatment groups are
expected to be uniformly higher or uniformly lower than the control group mean. With k total
groups, and one control group, there will be (k — 1) treatment groups. In this case, assign the
numeric value of (k- 1) to the control group and values of -1 to the treatment groups. The
resulting contrast coded variable tests the hypothesis that

(k-DY.-¥ -1, -..%_, =0,
where },,]; is the control mean and Y, is the mean of the ith treatment group. Substantively, this

hypothesis tests whether the control mean differs significantly from the average of all treatment
means. How? Divide this equation by (k — 1):

7 V+¥+..Y,

(k1)

The equation now reads “the control mean minus the average of the (k — 1) treatment means
equals 0.” (Note that we could have assigned the value of 1 to the control mean and the value of
-1/(k — 1) to each of the treatment means and achieved the same result. It is usually easier,
however, to use integers for contrast codes.)

In the two SSRI data sets, there was no control group (i.e., a group that was not pretreated
with an SSRI) because the object of the study was to compare differences among the four SSRIs.
If, however, a control group were present, one would contrast code the ANOVA factor by
assigning a value of 4 to the controls and a value of -1 to each of the four SSRI groups. The
resulting hypothesis to be tested would be

4YC - YSSRII - Yssmz - Yss,m - YSSRM =0.

Dividing this equation by 4 illustrates how the null hypothesis states that the control mean less
the average of the four experimental means equals 0:
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)_/‘" __YSSRH%YSSRIZ+YSSR13+YSSRE4 =0
c .
4

1.2.3.2 Contrast Coding: A second contrast-coded independent variable.

Let us turn attention to contrast coding a second independent variable from the same
ANOVA factor. Again, substantive considerations as to which means should be compared
should be the primary guide to construction of the codes. Mathematically, however, a second
contrast code may be either orthogonal or nonorthogonal to the first. With £ levels of an
ANOVA factor and when there are equal Ns in each cell, two sets of contrast codes are
orthogonal when :

k
ZWIEWZ:' =0. XX
fez]

Here, wy; denotes the code assigned to the ith level of the ANOVA factor on the first contrast
coded variable, and w; denotes the code assigned to the ith level of the ANOVA factor on the
second contrast coded variable. When there are equal Ns in each cell, two sets of contrast codes
are nonorthogonal when Equation X.X does not hold.

Table 1.4 gives some of the possible pairs of contrast codes for those examples
previously given in Table 1.3. Let us assume that the ANOVA has an equal number of
observations at each level. Then, example codes 1 and 2 are nonorthogonal because

3
Zwﬁwﬁ =],
i=]

Example codes 3 and 4 as well as example codes 2 and 5 are orthogonal.

Table 1.4 Examples of orthogonal and nonorthogonal contrast coded variables.

Genotype:
Example: wprre - - Zw“wzl, =
1: -1 1
2: 1 0 ~1
WiiWo = -1 0 0 -1
3: 2 -1 -1
4. 0 1 -1
Wiwo = 0 -1 1 0
2: 1 0 -1
5: -1 2 -1
WiWor = —1 0 1 O

When there are unequal numbers of observations, then the definition of orthogonal
contrast codes 15 somewhat different. Let N; denote the number of observations 1 the ith level of
the ANOVA factor. Then for an unbalanced ANOVA, two sets of contrast codes will be
orthogonal when
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k
WOW, W W, Wi, W, W, W,
Z LRI R s R DO AS - Re ~ EOTROAA |2 Sy

i=1 Nf N] N?. Nk
With k levels for an ANOVA factor, it is possible to have up to (k — 1) sets of contrast
codes. {(Note that it 15 not necessary to code all (k — 1) sets, although doing so can have some
statistical advantage. We discuss this later in Section X.X). If all pairs of contrast codes satisfy
Equation X.X (equal N case) or Equation X.X (unequal N case), then the set of codes is
completely orthogonal.

(X.X)

1.2.3.3 Orthogonal and non-orthogonal contrast codes

At this point, a short digression is necessary to discuss the concept of orthogonal and
non-orthogonal contrast codes. First a comment about terminology is in order. Recall that the
term “orthogonal” has the generic meaning of “being uncorrelated.” Hence, “non-orthogonal”
implies a correlation. Both terms are applied to three separate concepts: (1) an ANOVA design
(see Section X.X); (2) the series of numbers (i.e., contrast codes) assigned to the levels of an
ANOVA factor; and (3) the independent variables generated from the contrast codes. The key
point is that orthogonality 1s nof necessarily transitive over these three concepts. That is, an
orthogonal ANOVA design does not imply that a set of contrast codes is orthogonal; an
orthogonal contrast code does rot imply that the ANOVA design is orthogonal; and orthogonal
contrast codes do not imply that the independent variables generated from those codes are
uncorrelated.

There is one exception to this rule—when the ANOVA design is balanced and when
contrast codes are orthogonal. Under these circumstances, the resulting independent variables
will be uncorrelated. In addition, if the ANOVA factor in the balanced design has & levels, and
there (k — 1) orthogonal contrast codes, then the 55, summed over all the (k — ) independent
variables, equals the $S for the ANOVA factor from a classic ANOVA. We saw an illustration
of this in the BDNF example given above in Section X.X. Because the S for the model are
equal in this special case, orthogonal contrast codes effectively perform a classic ANOVA but
with an important twist. The classic ANOVA tests one and only one null hypothesis—can the &
group means be regarded as being sampled from a single hat of means? With orthogonal
contrast codes, a series of null hypotheses about the means can be tested, each with one degree
of freedom. In this way, the investigator usually learns more about the group means than just
performing a classic ANOVA, while at the same time performing a statistical analysis that is
mathematically equivalent to the ANOVA.

In a balanced ANOVA, orthogonal contrast codes have two major advantages over post
hoc multiple comparison procedures (or MCPs, see Section X.X). Hirst, the investigator can test
his/her own hypotheses with orthogonal contrast codes. Most post hoc tests are atheoretical.
Second, because the comparison of means using orthogonal contrast codes is planned or a priori,
there is no need to adjust alpha or jump through any of the other statistical gyrations associated
with MCPs. Hence, statistical power is almost always increased.

The mathematical niceties of orthogonal contrast codes, however, should always be
sacrificed to clearly stated, substantive hypotheses. If hypotheses dictate that contrasts be non-
orthogonal, then substantive considerations should always take precedence.

1.2.3.4 Comparing each treatment mean to a control mean

Non-orthogonal contrasts can also be used to compare each treatment mean to a control
mean. The fundamental setup of these codes 1s illustrated in Table 1.5 in which the ANOVA
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factor has four levels, a control level with mean Y, and three treatment levels with means Y,

through ¥ . Just assign the value of 1 to the control mean for every contrast. In the first

contrast assign -1 to the first treatment mean and 0 to all other treatment means. The remaining
contrasts then assign -1 to the treatment mean of interest and 0 to all other treatment means.

Table 1.5 Non-orthogonal contrast codes for comparing each treatment mean to a control
mean.

| Group Mean: |
Contrast
Code: 7. T, T, T
Wy 1 -1 0 0
Wy 1 0 -1 0
W3 1 0 0 -1

1.2.3.5 Contrast Codes: Orthogonal Polynomials

When the levels of the ANOVA factor are ordered groups, then orthogonal polynomial
contrast codes are often informative. The first code fits a linear term to the group means. That
is, it fits a straight line through the means. The second code fits a quadratic term-~i.e., a
parabola. The third fits a cubic, the fourth, a quartic, and so on. The key assumption is that the
groups are evenly spaced.

The use of orthogonal polynomial contrast codes is very similar to the use of regression
with ordered groups discussed in Section X.X. Regression with ordered groups, moreover, is
much easier to apply to data, especially when the statistical package does not have contrast
options with an ANOVA, ANCOVA, or GLM procedure. Hence, the reader could use the
techniques outlined in Section X.X to fit orthogonal polynomials. The major difference between
contrast codes in ANOVA and polynomial regression with ordered group lies in the error term
for the F ratio.

With k levels to an ANOVA factor, the error variance from a onwway ANOVA may be
viewed as the error from fitting a polynomial of order (k — 1) to the data. Hence, if there are five
levels, then the error variance from a oneway ANOVA is equal to fitting four orthogonal contrast
codes—linear, quadratic, cubic, and quartic. In regression with ordered groups, however, the
error term is dertved from the best fitting polynomial, which could be a quadratic. Still, the
difference between ANOVA with orthogonal polynomial contrast codes and regression with
ordered groups should be slight. The reason is that the higher order polynomials ignored in the
regression are insignificant and hence will not greatly reduce error.

Coding schemes for orthogonal polynomials for up to eight levels of an ANOVA factor
are presented in Table 1.6. Note that is it not necessary to fit all terms to an ANOVA factor. For
example, if the ANOVA factor has five levels, it is permissible to test only the linear and the
quadratic term.
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Table 1.6 Orthogonal polynomial codes for ANOVA factors with up to eight levels.

Level of ANOVA factor:

-13
-23

17

21

15

15

-35

[

10

-20

-15

35

-10

15

-17

-21

-13
23

Order:

u
i
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1.2.3.6 Contrast Codes: Helmert Codes

Many studies in neuroscience assess the time point (or dosage level) at which a response
starts or stops. When the response curves are monotonic, then contrast codes called Helmert
codes are useful. When issue is when a response stops, then the Helmert code compares the
mean for a time point against the average of the means after that time point. When the issue 1s
about the starting point for a response, then the Helmert code compares the mean for a time point
against the average of the means before that time pointB.

We tllustrate Helmert codes with an example. Suppose that a researcher interested in
learning examined the response of a biochemical parameter in the CNS as a function of the
learning trial. Measurement of the response requires sacrifice of the animals. Hence, different
groups of animals are required for each learning trial. Figure 1.6 presents the results of this
study along with the predicted response from the best fitting polynomial (a quadratic).

Figure 1.6 Mean (+/- 1 SEM) responses for learning trials along with the predicted values
from the best fitting polynomial.

24

Mean Resporse (+/— 1 SE)

Trial Number:

* This is usually referred to as a reverse Helmert code.
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It is obvious from both the plot of observed means and the quadratic that the response
increases until the fourth trial. Let us see whether the Helmert codes reveal that. The ANOVA
factor in this example can be called Trial Number with levels of Triall through Trial6. Because
there are 6 levels, we construct 5 contrast-coded variables. The first of these compares the mean
of Trial 1 against the average of the means of Trials 2 through 6. This code is completely
analogous to testing a “Control” (here, Triall) against the average of “Treatments” (here, Trials 2
through 6). Hence, the equation for this variable is

SY,-Y, =¥, - ¥, ¥, - ¥ =0.

The second Helmert code is designed to test whether the mean for the next level of the
ANOVA factor, Trial2, differs from the overall mean of the remaining trials, 3 through 6. Here,
we assign a value of 0 to Trial I because we are not interested in that any more, treat Trial2 as a
“Control” and the remaining trials as “Treatments.” The resulting code is

O +4Y, - ¥, ~¥, - ¥~ ¥, =0.

These and the remaining contrast codes are given in Table 1.7. Note that all rows in
Table 1.7 sum to 0, a necessity for contrast codes. Note also that Helmert codes are orthogonal.
The product of the codes in each of the first four columns of Table 1.7 is 0. The product of the
5" column is 1, while the product of the last column is -1. Hence, the sum of the products equals
1 — 1 =0. This is true of all Helmert codes, regardless of the number of levels.

Table 1.7 Example of reverse Helmert codes used to detect the ending point of a response.

Value assigned to level:

Contrast-coded

Variable: Triall | Trial2 | Trial3 | Trial4 | Trial5 | Trial6
Triall vs Rest 5 -1 -1 -1 -1 -1
Trial2 vs Rest 0 4 -1 -1 -1 -1
Trial3 vs Rest 0 0 3 -1 -1 -1
Trial4 vs Rest 0 0 0 2 -1 -1
Trial5 vs Rest 0 0 0 0 1 -1

We now use the Helmert contrast-coded variables as the independent variables in the
GIM. Fitting these to the data from Figure 1.6 gives a significant overall fit—R® = .39, df = (3,
84), p <.0001. Hence, we can interpret the significance of the individual contrast-coded
variables with some confidence. Figure 1.7 gives those results. We see that the results of Triall
vs Rest through Trial3 vs Rest are significant. The remaining two variables are not significant.

Hence, we conclude—as Figure 1.6 clearly illustrates—that the response stops changing at
Trial4.
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Figure 1.7 Results of testing Helmert contrast-coded variables.
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Contrast

Triall vs
Trial2 vs
Trial3 vs
Triald vs
Trialb wvs

Rest
Rest
Rest
Rest
Rest

D¥

Ll L L

Contrast SS
668.3168000
115.1960333
77.7493889
1.9067778
40.1363333

Mean Sgquare
668.3168000
115.1960333
77.7493889
1.9067778
40.1363333

F Value
38.71
6.84
4.62
0.11
2.38

Pr » F
<.0001
0.0105
0.0345
0.7373
0.1263

The process of ascertaining the starting point for a response works in the opposite way.
Here, the type of relationship starts out “flat” and then rapidly ascends (or descends). Figure 1.8
illustrates such a curve. The Helmert codes for detecting the starting Trial for the response
(which is Trial §) are given in Table 1.8.
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Figure 1.8 Mean (+/- 1 SEM) responses for learning trials along with the predicted values
from the best fitting polynomial; example of Helmert contrast coding to determine the

starting point of a response.
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Table 1.8 Example of reverse Helmert codes to detect the starting point of a response.

Trial Number:

Value assigned to level:

Contrast-coded

Variable: Trialt | Trial2 | Trial3 | Triald | TralS | Trial6
Rest vg Trial 2 -1 1 0 0 0 G
Rest vs Trial 3 -1 -1 2 4] 0 0
Rest vs Trial 4 -1 -1 -1 3 0 0
Rest vs Trial 3 -1 -1 -1 -1 4 0
Rest vs Trial 6 -1 -1 -1 -1 -1 5

1.2.3.7 Implementing contrast codes: GLM Procedures with “Contrast” statements

Most modern statistical packages have the equivalent of a “Contrast” statement that
allows one to provide contrast codes within an ANOVA, ANCOVA, or GLM procedure. In

Coding - 1.17




QMIN Coding - 1.18

these situations, the procedure will perform the classic ANOVA and then provide statistical tests
for the hypotheses generated by the contrast code.

Figure 1.9 gives the output from PROC GEM in SAS used to analyze the PKC-gamma
data. The code that generated this output contained two contrast statements, both designed to
explore the effect of knocking out a PKC-gamma allele. The first contrast statement assigned the
numeric values of 2, -1, and -1 to, respectively, genotypes +4, +-~, and --. This contrast asks
whether the average of the two genotypes having at least one knockout allele differs from the
wild-type genotype. The second contrast assigned codes of 0, -1, and 1; this tests whether the
heterozygote mean differs from the homozygote knockout mean.

Figure 1.9 Output from a oneway ANOVA with orthogonal contrasts.

Dependent Variable: Open Arm Percent time in open arm

Sum of
Scurce DF Sgquares Mean Square F Value Pr > F
Model 2 1154.920444 577.460222 16.21 0.0002
Error 42 2223.837333 52.948508
Corrected Total 44 3378.757778
R~-Square Coeff Vvar Root MSE Open Arm Mean
0.341818 59.53559 T.276573 12.22222
Source DF Type III SS Mean Square F Value Pr > F
Genotype 2 1154.920444 577.460222 10.91 0.0002
Contrast DF Contrast SS Mean Square F Value Pr > F
++ v Rest 1 291.860111 291.9601111 5.51 0.0236
+- v —- 1 862.960333 862.9603333 16.30 0.0002

The initial part of the output is identical to that of a oneway ANOVA with Genotype as
the ANQVA factor. The only difference is the last section of output that gives the results of the
two contrasts. The routine computes the SS for a contrast and the MS for the contrast. (Because
a contrast always involves 1 degree of freedom, the MS for the contrast will always equal the
SS). The F ratio for the contrast equals the MS for that contrast divided by the error MS from the
model. Hence, the F ratio for the first contrast ("++ v Rest”™) will equal
2919601 551

++vRest 7 57.0485 T

The numerator degrees of freedom for this F equal the df for the contrast (i.e., 1), and the
denominator df equals the error df for the model (i.e., 42). Hence, the p value is the probability
of observing an F greater than 5.51 from an F distribution with (1, 42) degrees of freedom.
Because the observed p value of .02 is less than .05, we reject the null hypothesis that the
knockout of at least one PKC-gamma allele has no effect on the percent of time spent in the open
arm of an elevated plus-maze.

The F for the second contrast (“+- v -~} divides the MS for this contrast by the error MS:
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_ 862.9603

YT 52,9485
The df for this contrast will also be (1, 42). Because the p value for this test is much less than
05, we conclude that the mean for the heterozygote 1s significantly different from that of the
double knockout homozygote.

Note that these contrast codes are orthogonal and the ANOVA design is balanced (15
mice per genotype). Hence, the 5SS for both contrasts in Figure 1.9 add up to the S for the
ANOVA factor Genotype.

Figure 1.10 presents results from fitting two non-orthogonal contrasts to the PKC-gamma
data. The first contrast assigned the codes 1, -1, and 0 to, respectively genotypes ++, +-, and --,
thus testing the difference between the means of the wild-type homozygote and the heterozygote.
The second contrast used the codes of 1, (t and -1, so it tests for mean differences between the
wild-type homozygote and the double knockout homozygote.

16.30.

Figure 1.10 Output from a oneway ANOVA with non-orthegonal contrasts.

Dependent Variable: Open_ Arm Percent time in open arm

Sum of
Source DF Sgquares Mean Sguare F Value Pr > F
Model 2 1154.920444 577.460222 10.%1 0.0002
Brror 42 2223.837333 52.948508

Corrected Total 44 3378.757778

R~-Square Coeff Var Root MSE Open Arm Mean

0.341818 59.53559 7.276573 12.22222

Source DF Type III S8 Mean Square F Value Pr > F
Genotype 2 1154.920444 577.460222 10.91 0.0002
Contrast DF Contrast S8 Mean Square F Value Pr > F
V- 1 0.0120000 0.0120000 0.00 .9881
+4+ v == 1 869.4083333 869.4083333 16.42 .0002

Just as in the orthogonal contrast, the F statistic for a non-orthogonal contrast equals the
MS for that contrast divided by the error MS for the model, and the df for the contrast has 1 in the
numerator and the error degrees of freedom in the denominator. The first contrast (“++ v +-") 1s
not significant. This agrees well with the observed data in Error! Reference source not found.
which reveals only a small mean difference between the ++ and the +- genotypes. The second
contrast (“++ v --) 1s highly significant, consistent with the large mean difference between the
++ and the — genotypes in Error! Reference source not found..
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1.2.3.8 Implementing contrast codes: Software without “Contrast” statements

Some statistical software does not provide the option of “Contrast” statements with their
ANOVA, ANCOVA, or GLM routines. One can still perform contrasts in these cases. If (k- 1)
contrasts are all coded and if all contrasts are orthogonal, then one can simply create new
independent variables from the contrast codes and then regress the dependent variable on these
contrast-coded independent variables. For example, in the coding scheme used above i Figure
1.9, we would create a new variable—Ilet us call it CC1—that has a value of 2 if the genotype is
++ and a value of -1 otherwise. The second new variable, CC2, would have a value of O for
genotype ++, 1 for genotype +-, and -1 for genotype --. We would then regress the dependent
variable on CC1 and CC2. Figure 1.11 gives the output from this regression.

Figure 1.11 Solving for contrast-coded variables using regression: orthogonal contrast
codes.

Dependent Variable: Open Arm Percent time in open arm

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F
Model 2 1154.82044 577.46022 10.91 0.0002
Error 42 2223.83733 52.94851

Corrected Total 44 3378.75778

Root MSE 7.27657 R-Square 0.3418
Dependent Mean 12.22222 Adj R-Sqg 0.3105
Coeff Var 59.53559

Parameter Standard

Variable Label DF Estimate Error t Value Pr > |t]
Intercept Intercept 1 12.22222 1.08473 11.27 <.0001
cCcl ++ v Rest 1 -1.80111 0.76702 -2.35 0.0236
cc2 t- vV == 1 -5.36333 1.32851 ~-4.04 0.0002

Note that the analysis of variance table in Figure 1.11 is identical to the one in Figure 1.9.
Results of the two contrast-coded variables, CC1 and CC2, are also identical albeit expressed in
a different form. The F statistics in Figure 1.9 are the square of the ¢ statistics in Figure 1.11.
The p values for the contrast-coded variables in Figure 1.11 are identical to those for the Contrast
statermnents used to generate the results in Figure 1.9,

If (1) there are fewer than (k — 1) contrasts or (2) the contrasts are non-orthogonal, then
the solution is still tractable, albeit more cumbersome. Follow these steps:

(1) Perform a classic ANOVA on the data.

(2) Record the error df and the error MS from the results of the classic ANOVA.

(3} Compute new independent variables using the contrast codes.

(4) Using a regression procedure, regress the dependent variable on the first contrast-coded
independent variable; do not regress it on all the contrast-coded independent variables.



QMIN Coding - 1.21

(5) Take the model sum of squares from this regression and divide it by the error MS from
the classic ANOVA,; this gives the F statistic for this contrast-coded independent
variable.

(6) The F statistic will have a numerator degrees of freedom equal to 1; the denominator df
will equal the error df from the classic ANOVA.

(7) Compute (or look up) the p value for the F; note that, because every contrast will have
the same degrees of freedom in the numerator and in the denominator, the critical value
for the F will be the same for all contrasts; hence, you may prefer to compute (or look up)
the critical value for F and compare the observed F to that critical value.

(8) Repeat steps (4) through (7) for the next contrast-coded variable; continue these steps
until all contrast-coded varniables have been analyzed.

We illustrate this procedure using the non-orthogonal contrast codes for the PKC-gamma

data given above in Figure 1.10. Instead of reproducing the classic ANOVA, we can take the
relevant numbers from that Figure—i.e., error df = 42 and error MS = 52.9485.

Figure 1.12 Regression analysis for non-orthogonal contrasts: first independent variable.

Dependent Variable: Open_Arm Percent time in open arm

Analysis of Variance

Sum of Mean
Source DF . Squares Square F Value Pr > F
Mcdel 1 0.01200 0.01200 0.00 0.89802
Error 43 3378.74578 78.57548

Corrected Total 44 378.75778

Root MSE 8.86428 R~Square 0.0000
Dependent Mean 12.22222 Adj R-Sg -0.0233
Coeff Var 72.52594

Parameter Standard

Variable Label DF Estimate Error t Value Pr > |t]
Intercept Intercept 1 12.22222 1.32141 9.25 <.0001
CC1 ++ v - 1 -0.02000 1.61839 -0.01 0.8902

The first step is to construct a new independent variable from the first contrast code. This
new variable, which we shall call CC1, has a value of 1 if the genotype is ++, a value of -1 if the
genotype is +-, or a value of 0 if the genotype is --. Next, we regress the dependent variable,
Open_Arm, on independent variable CC1. The results from this regression are given in Figure
1.12. The sum of squares for this regression is .012. (Note that this is also the value for the S§
of the contrast using a contrast statement in Figure 1.10). Hence, the F ratio for this contrast is

SSccy 012 002

F il w —
o MS 52.9485

error

The degrees of freedom for this F are (1, 42), and the p level is .988. Thus, there is no evidence
that the means for the wild-type homozygote and the heterozygote differ.
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We now move to the second independent variable. This will have values of 1 (genotype
++), 0 (genotype +-), or -1 (genotype --). Calling this variable CC2, we regress dependent
variable Open_Arm on CC2. The results are given in Figure 1.13.

Figure 1.13 Regression analysis for non-orthogonal contrasts: second independent variable.

Dependent Variable: Open Arm Percent time in open arm

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F
Model 1 8695.40833 869.40833 14.90 0.0004
Error 43 2509.34944 58.35696
Corrected Total 44 3378.75778
Root MSE 7.63817 R-Sqgquare 0.2573
Dependent Mean 12.22222 adj R-8qg 0.2400
Coeff Var 62.50232

Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t]
Intercept Intercept 1 12.22222 1.13878 10.73 <.0001
cCcz ++ v -- 1 -5.38333 1.39472 -3.86 0.0004

The S5 for the model from this regression is 869.4083 (once again, the same number
given in the Figure 1.10 using a contrast statement). Hence, the F statistic for the second
contrast-coded independent variable is

oSS, 8694083
Ccc2 MS

e 529485

With df of (1, 42), the p level for this F 15 .0002. (You should verify that this F, its degrees of
freedom, and the p value are the same as those in Figure 1.10). We conclude that there is strong
evidence that the means for the two homozygotes differ.

Note that we arrived at the same substantive results performing these hand calculations as
we would have just examining the output from the two simple regressions in Figure 1.12 and
Figure 1.13. This happened largely because of the example that we used. For the PKC-gamma
data, the difference between the mean for genotype ++ and the mean for genotype +- is very
small, so it is highly unlikely that a minor change in technique would ever make this difference
significant. Similarly, the difference between the ++ mean and the — mean is very large; it would
be very surprising if any reasonable test for this difference would not reach statistical
significance. In general, however, the results from the simple regressions and those from the
hand-calculated contrasts will not always be equal.

16.42.

Examples:
Coding Several Hypotheses
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Sometimes a study involves several groups, but only a few comparisons are of interest.
Suppose that a lab interested in developmental effects on anxiety administered a GABA blocker
to rat pups for two weeks shortly after birth and then tested them as adults. Naturally, there
would be a control group who received vehicle injections. In the adult testing, those rats who
had received the GABA blocker are randomly divided into four groups: a control, and three
groups, each administered an anxiolytic compound shortly before testing. The dependent
variable in this case 1s a measure of startle. The group has two major hypotheses: (1)
administration of the GABA antagonist in early postnatal weeks will result in increased anxiety
as adults; and (2) this effect will be blocked by each of the three anxiolytic agents.

Figure 1.14 presents the results of this hypothetical study.

Figure 1.14 Mean (+/1 1 SEM) startle as a function of early exposure to a GABA blocker
and three anxiolytic drugs.
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An overall ANOVA on these data would be inefficient because there are only two
hypotheses to be tested. Hence, one can construct two sets of contrast codes, one for each
hypothesis, and then examine the significance level of these two contrasts.

Let Y, denote the mean of the controls and ¥, through 173 denote the means of the groups
administered the GABA blocker, the subscript denoting the number of the anxiolytic drug. The
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very first contrast code would have the set of numbers (1 -1 0 0 0) for, respectively, the groups as
ordered in Figure 1.14. This code embodies the following null hypothesis
Y. —UF) +0(F) + O, +0(F,) =¥, - ¥, =0.
Substantively, this code tests whether the GABA antagonist had an effect on startle.
The second code tests whether the three groups given the anxiolytic differ from the group
previously administered the GABA blocker but recetving no anxiolytic before testing. The
appropriate code here would be (03 -1 -1 -1), giving the null hypothesis

LT+ T,
3

0F ) +3(Fy) ~1F) - WF) - 1(F) = T, - 0.

Hence, this tests whether the GABA-inhibitor only group ditfers from the average mean of the
GABA-inhibitors receiving an anxiolytic.

Figure 1.15 presents the results of fitting the ANOVA to these data. Note that the overall
ANOVA is not significant. This is not a problem because the two hypotheses are embodied in
the contrasts. The only utility of the overall ANOVA is to give an estimate of the error variance
that is used in testing the significant of the contrasts.

Figure 1.15 Results of the two contrasts.

Dependent Variable: Startle

Sum of
Source DF Squares Mean Square F Value Pr > F
Model 4 163252.718 40813.179 1.47 0.2254
Error 55 1532196.322 27858.115

Corrected Total 59 1695449.039

R-Square Coeff Var Root MSE Startle Mean

0.096289 20.80112 166.9075 802.3967

Source DF Type III SS Mean Sgquare F Value Pr > F
Group 4 163252.7177 40813.1794 1.47 0.2254
Contrast D Contrast S8 Mean Square F Value Pr > F
Ctrl v GABA Blkr 1 134430.6017 134430.6017 4.83 0.0323
No Drug v Drug 1 121626.5625 121626.5625 4.37 0.0413

Both contrasts are significant. The first, labeled “Ctrl v GABA Blke” in the output, tells
us that mean for the group receiving only GABA blocker does in fact differ from the Control
mean. From Figure 1.14, we see that this is an anxiogenic effect—the early GABA blocker
increases startle in the adult rat.

The second contrast tells us that there was an overall effect of the anxiolytic drugs.
Comparison of the means of these three groups with the mean for the GABA blocker only group
tells us that the drugs reduced startle.



