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1 Theory: The General Linear Model

1.1 Introduction
Before digital computers, statistics textbooks spoke of three procedures—regression, the

analysis of variance (ANOVA), and the analysis of covariance (ANCOVA)—as if they were
different entities designed for different types of problems.  These distinctions were useful at the
time because different time saving computational methods could be developed within each
technique.  Early statistical software emulated these texts and developed separate routines to deal
with this classically defined triumvirate.

In the world of mathematics, however, there is no difference between traditional
regression, ANOVA, and ANCOVA.  All three are subsumed under what is called the general
linear model or GLM.  Indeed, some statistical software contain a single procedure that can
perform regression, ANOVA, and ANCOVA (e.g., PROC GLM in SAS).  Failure to recognize
the universality of the GLM often impedes quantitative analysis, and in some cases, results in a
misunderstanding of statistics.  One major shortcoming in contemporary statistical analysis in
neuroscience—that if you have groups, then ANOVA is the appropriate procedure—can be
traced directly to this misunderstanding.

That said, modern statistical software still contain separate procedures for regression and
ANOVA.  The difference in these procedures should not be seen in terms of “this procedure is
right for this type of data set,” but rather in terms of convenience of use.  That is, for a certain
type of data, it is more convenient to use an ANOVA procedure to fit a GLM than a regression
procedure.

The organization of the next three chapters follows these principles.  In the current
chapter, we outline the GLM, provide the criteria for fitting a GLM to data, and the major
statistics used to assess the fit of a model.  We end the chapter by outlining the assumptions of
the GLM.  This chapter is expressly theoretical and can be skipped by those with a more
pragmatic interested in regression and ANOVA.  The next two chapters treat, respectively,
regression and ANOVA/ANCOVA.

1.1.1 GLM Notation
The GLM predicts one variable (usually called the dependent or response variable) from

one or more other variables (usually called independent, predictor, or explanatory variables)1.
Herein, we will use the terms dependent and independent variables, although we caution the
reader that dependency in this case does not necessarily imply causality.  In describing the linear
model, we follow the customary notation of letting Y denote the dependent variable and Xi denote
the ith independent variable.

In fitting a linear model to a set of data, one finds at a series of weights (also called
coefficients2)—one weight for each independent variable—that satisfies some statistical criterion.
                                                  
1 Linear models can also be used to predict more than one dependent variable in what is termed
multivariate regression or multivariate analysis of variance (MANOVA).  This topic, however,
is beyond the scope of this text.
2 In models with more than one independent variable, the coefficients are called partial
regression coefficients.
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Usually, additional statistical tests are performed on one or more of the weights.  We denote the
weight for the ith independent variable as βi.

The two additional features of a linear model are an intercept and prediction error.  The
intercept is simply a mathematical constant that depends on the scale of the dependent and
independent variables.  We let α denote the intercept.  A prediction error (also called a residual
or simply error) is the difference between the observed value of the dependent variable for a
given observation and the value of the dependent variable predicted for that observation from the
linear model.  We let E denote a prediction error and 

€ 

ˆ Y  denote a predicted value.
The term “linear” in linear model comes from the mathematical form of the equation, not

from any constraint on the model that it must fit only a straight line.  That mathematical form
expresses the dependent variable for any given observation as the sum of three components: (1)
the intercept; (2) the sum of the weighted independent variables; and (3) error.  For k
independent variables, the fundamental equation for the general linear model is

  

€ 

Y =α + β1X1 + β2X2 +KβkXk + E . (X.1)
The equation for the predicted value of the dependent variable is

  

€ 

ˆ Y =α + β1X1 + β2X2 +Kβk Xk . (X.2)
It is easy to subtract equation X.2 from X.1 to verify how a prediction error is modeled as the
difference between an observed and a predicted value.

It is crucial to recognize that the independent variables in the GLM can include nonlinear
transformations of variables that were originally recorded in the data set or sums or products of
these original variables3.  The central feature of the GLM is that these “new,” computed variables
are measured and can be placed into Equation X.1.

For example, let us consider a data set with two original predictor variables—X1 and X2.
Let us construct two additional variables.  Let X3 denote the first of these new variables and let it
be computed as the square of X1, and let X4 denote the second new variable which will equal the
product of X1 and X2.  We can now write the linear model as

€ 

Y =α + β1X1 + β2X2 + β3X3 + β4X4 + E . (X.3)
Note how this is still a linear model because it conforms to the general algebraic formula of
Equation X.1.

In practice, however, it is customary to write such linear models in terms of the original
variables.  Writing Equation X.3 in terms of the original variables gives

€ 

Y =α + β1X1 + β2X2 + β3X1
2 + β4X1X2 + E .

Even though this equation contains a square term and a product term, it is still a linear model that
can be used in regression and ANOVA.

1.1.2 ANOVA and ANCOVA Terminology
Although we have used the general phrase “independent variable,” ANOVA and

ANCOVA sometimes uses different terms.  ANOVA or ANCOVA should be used when at least
one of the independent variables is categorical and the ordering of the groups within this
categorical variable is immaterial.  ANOVA/ANCOVA terminology often refers to such a
categorical variable as a factor and to the groups within this categorical independent variable as

                                                  
3 The exception to this rule is that a regression equation cannot contain a variable that is a linear
transform of any other variable in the equation.
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the levels of the factor.  For example, a study might examine receptor binding after
administration of four different selective serotonin reuptake inhibitors (SSRI).  Here, the
ANOVA “factor” is the type of SSRI and it would have four levels, one for each drug.  A
oneway ANOVA is an ANOVA that has one and only one factor.

The terms n-way ANOVA and factorial ANOVA refer to the design when there are two or
more categorical independent variables.  Suppose that the animals in the above study were
subjected to either chronic stress or no stress conditions before administration of the SSRI.
“Stress” would be a second ANOVA factor, and it would have two levels, “chronic” and “none.”
Such a design is called either a two-way ANOVA or a two-by-four (or four-by-two) factorial
design where the numbers refer to the number of levels for the ANOVA factors.

In traditional parlance, ANOVA deals with only categorical independent variables while
ANCOVA has one or more continuous independent variables in the model.  These continuous
independent variables are called covariates, giving ANCOVA its name.
ANOVA factors and independent variables

ANOVA and ANCOVA fit into the GLM by literally recoding the levels of an ANOVA
factor into dummy codes and then solving for the parameters.  For example, suppose that an
ANOVA factor has three levels.  The GLM equivalent of this model is

21
ˆ XXY 21 ++= ββα .

Here, X1 is a dummy code for the first level of the ANOVA factor.  Observations in this level
receive a value of 1 for X1; otherwise, X1 = 0.  Independent variable X2 is a dummy code for the
second level of the ANOVA factor.  Observations in the second level receive a value of 1 for X2;
otherwise, X2 = 0.  The third level is not coded because the parameter α is used in predicting its
mean.

This type of coding means that the parameters of the GLM become the means of the
levels for the ANOVA factor.  For example, for an observation in the third level the value of X1 =
0 and the value of X2 = 0.  Hence, the predicted value of all observations in the third level is

α=3̂Y ,
the predicted value of all observations in the second level is

2+= βα2̂Y ,
and the predicted value for all observations in the first level is

1+= βα1̂Y .
The significance test for the ANOVA factor is the joint test that β1 = 0 and β2 = 0 at the same
time4.

1.2 GLM Parameters

1.2.1 The Meaning of GLM Parameters
The meaning of the intercept (α) is easily seen by setting the value of every X in Equation

X.1 to 0—the intercept is simply the predict value of the dependent variable when all the
independent variables are 0.  Note that the intercept is not required to take on a meaningful real-

                                                  
4 There are several different ways to dummy code the levels of an ANOVA factor.  All consistent
codings, however, will result in the same test of significance.
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world value.  For example, we would always estimate an intercept when we predict weight from
height even though a height of 0 is impossible.

A regression coefficient—say, β1 for the first independent variable—gives the predicted
increase in the dependent variable for a unit increase in X1 controlling for all other variables in
the model.  To see what this statement means, let us predict carotid arterial pressure from a dose
of ephedra (measured in mgs) with baseline arterial pressure as the second independent variable
in the model.  Let the value of β1 from the model be .27.  Then, we would conclude that a 1 mg
increase in ephedra would increase arterial pressure by .27 units, controlling for baseline arterial
pressure.

The phrase “controlling for” requires explanation because the “control” is not the typical
type of control used in experimental design.  The mathematics behind the GLM equates
“controlling for” with “fixing the values of.”  That is, if one were to fix the values of all the
independent variables (save X1, of course) at set of any numbers, then a one-unit increase in X1
predicts an increase of β1 units in the dependent variable.  Hence, the phrase “controlling for”
refers to statistical control and not experimental control.

1.2.2 Estimation of the GLM Parameters
The most frequent criterion used to estimate the GLM parameters is called the least

squares criterion.  This criterion minimizes the sum of the squared difference between observed
and predicted values, the summation being over the observations in the data set.  To examine this
criterion, subscript the variables in Equations X.1 and X.2 by i to denote the ith observation.
Then the squared of the difference between the observed value for the ith observation and the
predicted value for the ith observation equals 

€ 

(Yi − ˆ Y i)
2.  Summing over all observations gives

€ 

(Yi − ˆ Y i)
2

i=1

N

∑ . (X.4)

Because the error for the ith observation is 

€ 

Ei = (Yi − ˆ Y i), the squared error for the ith observation
equals 

€ 

Ei
2 = (Yi − ˆ Y i)

2.  Hence, the sum of squared difference between observed and predicted
values is equivalent to the sum of squared error,

€ 

(Yi − ˆ Y i)
2

i=1

N

∑ = Ei
2

i=1

N

∑ . (X.5)

In GLM, the quantities given by Equations X.4 and X.5 are termed the error sums of squares and
is often abbreviates as SSE.

Minimizing a function with respect to one or more parameters is a problem in calculus.
(Take the first derivatives of the function with respect to the parameters, set the derivatives to 0,
and then algebraically solve for the parameters.)  The solution to this calculus problem then gives
us estimates of the parameters.  Mercifully, statisticians have developed closed-form equations
for this problem, so there is no need to go through this exercise for a specific application of the
GLM to a data set.

1.3 Statistical Inference in GLM
There are at least two parts (but sometimes other parts as well) behind the logic of

statistically testing a GLM.  The first of these deals with the overall model and effectively asks



QMIN GLM Theory - 1.5

how well the model explains the data regardless of the individual independent variables in the
model.  The second part examines the effects of individual independent variables usually with an
eye towards distinguishing those independent variables that contribute significantly to prediction
from those that add little to the model.

1.3.1 Assessing Overall Fit: Statistical Significance
The statistical significance (or lack of it) for an overall GLM is assessed in an ANOVA

table5 that summarizes a test of the null hypothesis that all βs in the model are 0. Before we
consider the specifics of this table, let us first deal with some concrete data.  Table 1.1 presents
the group means and variances from the data set first presented in the Preface.  The purpose of an
ANOVA table is to obtain two independent estimates of the population variance (σ2) and then
test whether these two estimates are within sampling error of each other.  Now examine the data
in Table 1.1 and ask yourself, “How can I obtain an estimate of the population variance from
these data?”  Most students readily respond by taking the average of the four variances.  This is
indeed a legitimate response.
Table 1.1 Group means and variances from the Preface data set.

Group: N Mean Variance
Control 15 3.389 1.415
10 mgs 15 4.170 3.540
15 mgs 15 4.738 2.837
20 mgs 15 4.693 1.726

Because this estimate of the population variance is based on the variance within each
group it is sometimes called the within-group variance, but in general it is most often called the
error or the residual variance.  Let us designate this estimate of σ2 as 

€ 

sE
2 .  For the data in Table

1.1,

€ 

sE
2 =
1.415 + 3.540 + 2.837 +1.726

4
= 2.3795 .

(Note that we could take a simple average because the sample size for each group is equal;
otherwise, we would have weighted the variances by sample size).

The second estimate of the population variance is much less intuitive but equally valid.
This estimate of σ2 is based on two critical assumptions: (1) the null hypothesis that there are no
mean differences among the four groups holds (at least temporarily); and (2) that the variable is
normally distributed within groups or that sample size is large enough that the central limit
theorem applies to the means.  (Review section X.X for a discussion of the central limit
theorem).  Under these assumptions, the means are regarded as being sampled from a “hat” of
means in which the overall mean is µ, the population mean, and the variance is σ2/Nw where Nw is
the number of observations within each group or 15 in the current example.  Consequently, we
have the equation

                                                  
5 Do not confuse an ANOVA table with the ANOVA statistical procedure.  All GLM procedures
produce an ANOVA table.
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€ 

sX 
2 =

σ 2

Nw

,

where 

€ 

sX 
2  is the variance of the means.  Multiplying both sides of this equation by Nw gives us the

second estimate of σ2.  We will denote this estimate as 

€ 

sM
2 , the subscript M being used to signify

that this estimate of the population variance is based on the Means.
To derive this estimate of σ2, we begin by treating the four observed means in Table 1.1

as if they were four raw scores and computing their variance.  Without going through the
arithmetic, we have 

€ 

sX 
2 = .3941.  Hence,

€ 

sM
2 = N ⋅ sX 

2 =15 ⋅ .3941= 5.9115 .
Now recall the definition of a variance given in Chapter X.X—a variance is the sum of

squared deviations from an expected (or predicted) value divided by its degrees of freedom.
Hence, error variance will equal the sum of squares for error divided by the degrees of freedom
for error, a quantity that we denote as dfE,

€ 

sE
2 =

SSE
dfE

.

We are now in position to examine the ANOVA table from a GLM.  Figure 1.1 gives the
ANOVA table from the present example.  The first row in this table simply labels the rows of the
output.  Every ANOVA table will contain two rows, one for the Model and the second for Error.
Each of these rows contains an entry for its degrees of freedom (df), sum of squares (SS), and
what ANOVA terms a “mean square” (MS) but which is also an estimate of the population
variance, σ2, under the null hypothesis.

The row labeled Model gives the statistics for the group means in this example.  It has
three degrees of freedom because there are four groups giving 4 – 1 = 3 df.  The sum of squares
for the Model is the sum of squared deviations of the four means from the overall mean
multiplied by Nw.  The column labeled “Mean Square” equals the sum of squares divided by its
degrees of freedom, so this is actually the quantity 

€ 

sM
2 --i.e., the estimate of σ2 derived from the

variance of the means.  You should verify that MSmodel equals the value of 

€ 

sM
2  that we derived

above.  (We discuss the last two columns—the F value and its p level—later.)

We introduced the concept of MSmodel through the analogy of picking means from a hat of
means because that is the way in which we introduced the t test for independent groups.  A more
precise way of defining the MSmodel for this row of the ANOVA table is that it estimates the
population variance based on the predicted values or the 

€ 

ˆ Y s from the model.  In our example, an
observation from the 15 mg group would have a predicted value that equals the mean for that

Figure 1.1 An ANOVA Table from the Preface data set.
Dependent Variable: Response

                          Sum of
Source           DF      Squares  Mean Square   F Value    Pr > F
Model             3   17.7354667    5.9118222      2.48    0.0700
Error            56  133.2473067    2.3794162
Corrected Total  59  150.9827733
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group (2.84) and an observation from the controls would have a predicted value equal to the
control mean (1.42).  In other applications of the GLM, the predicted values are functions of
several independent variables, not all of which need be group means.  Still, the overall
conclusion will hold—namely, that under the null hypothesis, MSmodel is an estimate of the
population variance, σ2, based on the null hypothesis.

The second row of the ANOVA table also gives the df, sum of squares, and mean square
for error.  For this example, there are 15 observations within each group, so there are 15 – 1 = 14
degrees of freedom for calculating the variance for a single group.  Multiplying 14 by the
number of groups (4) gives the df for error (56).  The mean square for error is the estimate of the
population variance derived from averaging the variances for the four groups.  You can verify
that this number in the output equals (within rounding error), the average of the four variances in
Table 1.1.

Just as the MSmodel deals with the predicted value for the model, MSerror deals with the
error or the residuals from the model.  We originally derived this quantity by averaging the
variances within the four groups, and indeed, this is mathematically correct.  A more general
view, however, would be to treat MSerror as an estimate of the population variance based on the
prediction errors.  For example, the first observation in the X.X data set is a control with an
observed value of 4.50.  The predicted value for this observation equals the control mean of 1.42.
Hence, the error for this observation equals 4.50 – 1.42 = 3.08.

The final row of the table, labeled here as “Corrected Total” but often just called “Total,”
gives the degrees of freedom and the sum of squares for the dependent variable.  If one were to
divide the latter by the former, one would arrive at the variance of the dependent variable.

The F value (also called an F ratio) is a test statistic for the ratio of two estimates of the
same variance.  In this case, F equals the estimate of σ2 based on the means (i.e., 

€ 

sM
2  divided by

the estimate of σ2  based on the within-group variances (i.e., 

€ 

sE
2 ).  In ANOVA terms, F equals the

mean square for the model divided by the mean square for error or

€ 

F =
sM
2

sE
2 =

MSmodel
MSerror

.

Unlike the t statistic which has one degree of freedom associated with it, the F statistic has two
degrees of freedom.  The first of these equals the df for the variance in the numerator (3 for the
present example) and the second equals the df for the variance in the denominator (56 for this
example).  The p level gives the significance level for the F statistic.

To complete discussion of the ANOVA table, we must explain the logic behind the
alternative hypothesis.  When we previously outlined the logic behind the t test for two
independent groups (see Section X.X), the alternative hypothesis was depicted as drawing
samples from two different hats with different population means but the same population
variance.  So how many “hats” are there for the present example?  The answer is that under the
alternative hypothesis there are at least two different hats but there may be as many as four
different hats.  The population means in the different hats are unequal but are assumed to have
the same population variance.

Under the alternative hypothesis, the variance in the group means will equal the true
variance in the population means plus the variance due to sampling error.  Let 

€ 

σ µ
2  denote the true

variance among the population means.  The variance due to sampling error is given by the
central limit theorem as σ2/Nw.  Hence, under the alternative hypothesis, the expected value of
the variance in the means equals
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€ 

sX 
2 =σ µ

2 +
σ 2

Nw

.

If we now multiply both sides of this equation by Nw, we have the expected mean squares for the
model or

€ 

E(MSmodel) = Nwσ µ
2 +σ 2 .

Hence, the expected F ratio under the alternative hypothesis becomes

€ 

F =
E(MSmodel)
E(MSerror )

=
Nwσ µ

2 +σ 2

σ 2 =1+
Nwσ µ

2

σ 2 .

Note that as the population means become more and more different, then the quantity 

€ 

σ µ
2  gets

larger and larger and the F statistic departs more and more from 1.06.  Hence, large values of F
favor the alternative hypothesis while values of F close to 1.0 favor the null hypothesis.

Once again, the expectation for the MSmodel under the alternate hypothesis given above is
specific to this example.  In general, the expectation for the MSmodel under the alternate
hypothesis is a function of the variance in the predicted values plus the population variance.  The
general principle of “the larger the F, the more likely the null hypothesis is false” still holds, but
what constitutes a “large F” depends on the particular problem.

In summary, the ANOVA table tests the null hypothesis by calculating two estimates of
the population variance.  The first of these is based on the predicted values from the model, and
the second is based on the values of the residuals.  Under the null hypothesis, both estimates
should be within sampling error, so the ratio of the mean square for the model to the mean square
for error should be around 1.0.  The F statistic tests whether this ratio is significantly larger than
expected under the null hypothesis.  If the p value for the F statistic exceeds the predetermined
alpha level, then the null hypothesis is rejected and one concludes that the model does, in fact,
predict better than chance.

Note that the ANOVA table applies to the whole model and not to specific parts of the
model.  This table and its test statistic (i.e., the F statistic) assesses whether the model as a whole
predicts better than chance.  For this reason, the F statistic for this table is sometimes call an
omnibus F.

1.3.2 Assessing Overall Fit: Effect Size
The customary measure of effect size in a GLM is the squared multiple correlation

almost always denotes as R2.  The simplest interpretation of R2 is that it is the square of the
correlation between the predicted values and the observed values of the dependent variable.
Hence, it is an estimate of the proportion of variance in the dependent variable explained by the
model.  Mathematically, R2 has a lower bound of 0 (although in practice, an R2 exactly equal to 0
is implausible) and an upper bound of 1.0.  The larger the value of R2, the better the model
predicts the data.

Although R2 is a measure of effect size, it is a biased estimate.  The procedures used to
estimate parameters in the GLM capitalize on chance, making R2 an overestimate of its
population value.  The amount of bias is a complicated function of the number of observations in
the data set and the number of independent variables in the model, but as a crude rule of thumb,

                                                  
6 Technically, the expected value for an F statistic under the null hypothesis is a number close to
1.0, but not necessarily 1.0.
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the bias will increase as the ratio of the number of independent variables to the number of
observations increases.  For this reason, most statistical programs for GLM will also calculate an
adjusted R2.  The adjusted R2 attempts to correct for the bias, but the correction is not perfect.  In
assessing effect size, it is always good practice to compare the value of R2 with the adjusted R2.

A second major factor influencing the interpretation of R2 is the nature of the study.  In an
observational study, nonrandom sampling can greatly increase R2.  In some types of genetic
linkage analysis, for example, individuals may be selected because of extremely high and/or
extremely low values on a quantitative trait.  Although an R2 can be calculated from a GLM
fitted to these data, the value of that R2 should not be extrapolated to the general population.

In a similar way, controlled experiments can give large values of R2 when experimental
manipulations are extreme.  Generally, comparison of R2 across different controlled experiments
is not recommended without careful consideration of the comparability of the dependent
variables and the range of the experimental manipulations in the studies.  Comparison of R2

values across different models within the same study, however, is very important (see Section
X.X below).

1.3.3 Assessing Individual Independent Variables: Statistical Significance
Statistical procedures for GLMs usually output a table consisting of a row for each

independent variable in the model along with a statistical test of significance for the independent
variable.  The form of this table, however, depends on the software procedure used to solve for
the parameters in a GLM.  Regression procedures typically print out the parameter estimates
(i.e., the intercept and the regression coefficients or βs).  ANOVA procedures usually do not
print out parameter estimates unless a user specifically requests them but will print out a measure
of statistical significance for each independent variable.

Figure 1.2 presents output from a major regression procedure in SAS, PROC REG, for a
model that predicts the dependent variable from two independent variables, X1 and X2.  The
overall model that was fitted to these hypothetical data was

€ 

Y =α + β1X1 + β2X2 + E .

The row labeled “Intercept” gives the estimate of α in this model.  (The degrees of freedom or df
simply give the number of parameters estimated for a row which will always be 1 in this case).
The standard error for a parameter estimate in regression is a complicated function of the means,

Figure 1.2 A table of parameter estimates from a regression procedure.

                   Parameter      Standard
Variable    DF      Estimate         Error    t Value    Pr > |t|
Intercept    1      -0.17014       0.20517      -0.83      0.4219
X1           1       0.03171       0.29074       0.11      0.9148
X2           1       1.01164       0.35619       2.84      0.0139
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standard deviations, and covariances of the independent variables along with an estimate of the
error variance of the model7.  As discussed in Section X.X, the t statistic takes the form

€ 

t =
ˆ θ − E(θ)
sθ

where 

€ 

ˆ θ  is the estimate of a parameter, E(θ) is the hypothesized value of the parameter, and sθ is
the estimated standard error of the parameter.  Unless a user specifies otherwise, the
hypothesized value for a parameter in a GLM model is always 0.  Hence, the t statistic for the
intercept in this example equals

83.
20517.

017014.
−=

−−
=t .

The final column for the intercept gives the two-tailed p level for the parameter estimate.
From Figure 1, one would conclude that independent variable X1 does not significantly

predict the dependent variable because its two-tailed p value is considerably greater than the
customary cutoff of .05.  On the other hand, X2 is a significant predictor.

Figure 1.3 illustrates the output from an ANOVA procedure.  Here, there are two
independent variables, again called X1 and X2, although they are not the same as those in Figure
1.2.  Both variables are categorical.  Variable X1 has three levels, so a test for this variable has
two degrees of freedom.  Variable X2 has two levels giving one df for a test of its effect.

The ANOVA procedure uses an F test to assess significance.  Think of it as calculating
the sum of squares and mean square from the predicted values using X1 as the predictor (and
controlling for X2).  The resulting F value, 6.07 in this case, uses the mean square for X1 as the
numerator and the mean square for error as the denominator.  The p value for X1 suggests that it
is unlikely that the three means for the levels of this ANOVA variable differ simply by chance.
Similarly, the F value for X2 has the mean square for X2 in the numerator and the error mean
square in the denominator.

1.3.4 Assessing Independent Variables: Effect Size
In regression procedures, there are two ways to assess the effect size of an individual

predictor.  The first of these is based on the regression coefficient and gives a measure of how
much the dependent variable as a function of change in an independent variable.  We have
already seen that a regression coefficient gives the change in the dependent variable per unit

                                                  
7 See standard texts on regression such as Cohen & Cohen (19xx) for the formulas for standard
errors of parameter estimates.

Figure 1.3 A table of independent variables (ANOVA factors) from an ANOVA
procedure.
Source      DF    Type III SS    Mean Square    F Value    Pr > F
x1           2    14.58669119     7.29334559       6.07    0.0047
x2           1     4.92505405     4.92505405       4.10    0.0490
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change in the independent variable.  Hence, one can use the regression coefficient to calculate
the expended change in a response by, say, increasing a dose by 5 mgs.

Another way of assessing change in the dependent variable is to interpret the
standardized regression coefficient8.  The standardized regression coefficient is the coefficient
from a regression in which all variables are standardized (i.e., have a mean of 0 and a standard
deviation of 1.0).  Hence, all units are expressed as “standard deviation units.”  For example, a
standardized regression coefficient of -.27 implies that an increase of one standard deviation in
the independent variable predicts a decrease of .27 standard deviations in the dependent variable.

The second way to measure the effect size of an independent variable is in terms of the
variance explained by that variable.  Here, an appropriate index is the square of the partial
correlation coefficient.  This measures the proportion of variance in the dependent variable
explained by the independent variable controlling for all the other independent variables.

There are no universal rules about which of the above measures is the best index of the
effect size.  The study design—coupled with a healthy dose of pragmatism and common
sense—is usually the best guide.  When the relationship among the variables is indeed linear,
then the raw regression coefficient has the advantage of being invariant across the range of
values of the independent variable used in a study.  The standardized regression coefficient and
the square of the partial correlation, on the other hand, are sensitive to the range of values in the
independent variable.

To explain this difference, suppose that two dose-response studies are conducted.  The
first uses doses of 5 mgs and 10 mgs while the second uses doses of 4, 8, 12 and 16 mgs.  The
raw regression coefficients from both studies have the same expected values.  The standardized
regression coefficients and the squared partial correlation, however, will be greater in the second
study than in the first because the greater variance of the independent variable (dose) in this
study.  This property of the raw regression coefficient makes it ideal for comparing the results
across studies.

In contrast, consider a dose-response study in an animal model of tardive dyskinesia that
compares the effects of haloperidol and thioridazine.  For ambulatory schizophrenics, the
customary daily dosage of haloperidol is between 10 and 20 mgs but ranges from 150 to 400 mgs
for thioridazine.  Clearly, a 1 mg change in one drug cannot be compared to a 1 mg change in the
other.  Here, the standardized regression coefficient or partial correlations give a better measure
of the relative effect each drug.

1.4 Orthogonal and Non-orthogonal GLM:  Two Types of Sums of Squares
When the independent variables of a GLM are uncorrelated with one another, then the model is

called orthogonal; otherwise, it is termed non-orthogonal.  In a pure ANOVA where all of the factors
are truly categorical, then equal sample size in each cell guarantees that the model will be orthogonal.

In an orthogonal design, there is one and only one mathematical way to compute the sums of
squares, the mean squares, and, hence, the estimates of the population variance, σ2, under the null
hypothesis.  In non-orthogonal designs, however, there is more than one way to compute these statistics.
                                                  
8 In the behavioral sciences, standardized regression coefficients are sometimes called beta
weights and will be labeled as “beta” on the output.  Do not confuse our use of β with a beta
weight.  The symbol β used in this text conforms to the established statistical convention of
using Greek letters to denote population parameters.
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The two most common methods for computing SS and MS in a non-orthogonal ANOVA are
what we shall term the hierarchical and the partial method9.  In the hierarchical method, each term in
the ANOVA is adjusted for all the terms that precede it in the model.  For example, consider a study
examining the effects of chronic administration of four different selective serotonin reuptake inhibitors
(SSRI) in non-stressed and chronically stress rats.  (See Section X.X for more information on this data
set).  Here, there are two ANOVA factors—Stress, with two levels, and SSRI, with four levels.  Assume
that in fitting the GLM, we instruct the software to fit the Stress factor first, then the SSRI factor, and
finally the interaction between Stress and SSRI.

In the hierarchical method, the GLM will compute the SS and the MS for Stress, ignoring both
SSRI and the interaction term.  Next it will compute the SS and the MS for SSRI controlling for Stress
but ignoring the interaction.  Finally, it will compute the SS and the MS for the interaction term,
controlling for both Stress and SSRI.  Figure 1.4 gives the hierarchical sums of squares, mean squares, F
statistics, and p values for this example.  Note that SAS, the statistical package used to generate the
output in this Figure, refers to the hierarchical solution as the “Type I Sums of Squares.”  Other
statistical packages may use different terminology.

Figure 1.4 Hierarchical solution for sums of squares, mean squares, F ratio, and p values.

In the partial method, each independent variable (or ANOVA factor) in the model is adjusted for
all other independent variables (or ANOVA factors), regardless of order.  Hence, the partial SS for
Stress adjusts for (i.e., controls for) the effect of SSRI and the effect of the interaction between Stress
and SSRI.  Similarly, the partial SS for SSRI controls for the main effects of Stress and for the
interaction.  The interaction term controls for both the main effects of Stress and SSRI.  Figure 1.5gives
the partial sums of squares, mean squares, F statistics, and p values for this example.  (SAS refers to the
partial SS as “Type III Sums of Squares.”)  Note that the SS, MS, F, and p are the same in this Figure as
they were for the hierarchical solution in FIG X.X.  This is because computation of the interaction
statistics controls for Stress and for SSRI in both solutions.

                                                  
9 Although the terms hierarchical and partial (as well as the terms Type I SS and TYPE III SS)
are used in some statistical texts and software, they are not universal.  Consult the documentation
for your software to make certain that you understand the printed output from its ANOVA and
GLM procedures.

Source         DF     Type I SS   Mean Square  F Value  Pr > F
Stress          1   20030.09043   20030.09043     7.43  0.0075
SSRI            3   12822.03684    4274.01228     1.59  0.1971
Stress*SSRI     3    9632.64154    3210.88051     1.19  0.3167
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Figure 1.5 The partial solution for sums of squares, mean squares, F ratio, and p values.

Note also that there is little difference in the statistics from the hierarchical and partial solutions.
This is due to the fact that these data are very close to being orthogonal.  In general, the more non-
orthogonal the model, the more discrepant the two sets of statistics will be.

Which sum of squares is appropriate?  Most often, this will be a substantive and not a statistical
decision.  Independent variables that are used as control factors should generally be entered first and the
hierarchical method can be used.  For example, if the main thrust of a study is a neuroimaging difference
between patients with Alzheimer’s disease and controls, one might wish to enter sex as the first
ANOVA factor.  This would remove the effects of sex from the data and leave the comparison of the
Alzheimer’s and control’s free of sex differences.  Whenever a hierarchical solution is chosen, however,
any interaction term should always be entered after both main effects are entered.  For example, the
appropriate entry for this imaging study should be

Imaging_Variable = Sex   Disorder   Sex*Disorder
and not

Imaging_Variable = Sex   Sex*Disorder   Disorder.
If there is any doubt about which method to employ, then interpret the partial SS.  They will be

the most conservative.  In experimental neuroscience, attempts are usually made to keep cell Ns equal,
so the differences in sample size tend to be small.  Here, the two types of SS will almost always give
comparable results, as they did in the above Figures.

1.5 Assumptions of the GLM
Four major assumptions underlie the traditional GLM: (1) linearity; (2) normality of the

residuals; (3) equality of residual variances; and (4) fixed independent variables measured
without error.  Below, we briefly define these assumptions.  In Sections X.X and X.X, we further
explicate the assumptions, examine how to assess their validity, and provide potential remedies
when they are violated.

1.5.1 Linearity
Instead of presenting a formal definition of the linearity assumption, let us use induction

to arrive at the meaning of this assumption.  To aid the inductive process, imagine a data set with
a very, very large number of observations—something approaching infinity.  Suppose that we
were to fix the value of all the independent variables in the model, save one, to specific numbers.
There is no need to be selective about the numbers—any set of numbers within the bounds of the
data set will do.  The assumption of linearity maintains that the relationship between the
dependent variable and that single independent variable that we allow to vary is linear and not
curvilinear.  Now, let us fix the value of that single independent variable to a number and let one
of the other independent variables be free to vary.  The assumption of linearity implies that the

Source         DF   Type III SS   Mean Square  F Value  Pr > F
Stress          1   19612.75652   19612.75652     7.28  0.0081
SSRI            3   12769.87469    4256.62490     1.58  0.1987
Stress*SSRI     3    9632.64154    3210.88051     1.19  0.3167
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relationship between the dependent variable and the recently freed independent variable is also
linear.  If we continued with this logic to examine the relationship between each independent
variable and the dependent variable, then the assumption predicts linear relationships for all the
independent variables.

The assumption of linearity allows the GLM to—paradoxically—fit certain types of
nonlinear models to the data.  Consider the following GLM equation:

€ 

ˆ Y =α + β1X + β2X 2.
A plot of 

€ 

ˆ Y  as a function of X is a parabola that resembles a U-like (or inverted U-like) shaped
curve.  Yet, the model meets the assumption of linearity when the relationship between 

€ 

ˆ Y  and X
is linear and the relationship between 

€ 

ˆ Y  and X2 is linear.  This property of the GLM gives rise to
a technique called polynomial regression that will be explained in detail in the next chapter.

1.5.2 Normality of Residuals
Suppose that we fixed the values of all the independent variables at reasonable numbers

within the bounds of the data set and then calculated the prediction errors for that set of values.
Under the normality assumption, these residuals would have a normal distribution.  Furthermore,
the residuals would also be normally distributed for all possible sets of values of the independent
variables. Note that the normality assumption does not apply to the raw scores of the dependent
variable but to the residuals or the prediction errors of the model.  Hence, the dependent variable
itself does not have to have a normal distribution.

Often, one or more of the independent variables in a GLM consist of groups.  In such
cases, the normality assumption implies that the dependent variable is normally distributed
within each group.

1.5.3 Equality of Residual Variances
Let us once again fix the values of all the independent variables at reasonable numbers

within the bounds of the data set and then calculated the prediction errors for that set of values.
Let us further calculate the variance of these prediction errors.  Again, repeat this exercise for all
possible values of the independent variables.  The assumption of the equality of residual
variances holds that all these variances will be the same.

In regression terminology, this assumption is called homoscedasticity and its violation,
heteroscedasticity.  When an independent variable is defined by group membership, then the
assumption implies that the variance within each group is the same.  Hence, in ANOVA
terminology, the assumption is also called the homogeneity of variance assumption.

1.5.4 Fixed Independent Variables Measured Without Error
This assumption is not always necessary, but it can influence the type of GLM analysis

and the interpretation of results.  To understand the assumption, we must first know the
difference between fixed-effect independent variables and random-effect independent variables.
A random-effect independent variable has two salient features: (1) the values of an independent
variable are randomly sampled from a population of possible values; and (2) one want to
generalize the result to the population of values.  For example, patients may be selected from
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three clinics in a metropolitan area and the researchers want to generalize to all clinics.  In this
case, the independent variable “Clinic” could be treated as a random effect.

Fixed-effect independent variables meet one or more of the following three conditions:
(1) an experimental manipulation; (2) all values of the independent variable are sampled; and (3)
there is no desire to generalize beyond the immediate study.  Examples of experimental
manipulations are obviously fixed—a researcher does not randomly administer various lengths
of restraint to rats and then subdivide them into “low” and “high” stress groups.  A variable like
sex exemplifies a variable in which all values are sampled.

Traditional GLM models deal with fixed effects, and this is the default for most
regression and ANOVA software.  Most statistical packages, however, have either specialized
routines or options embedded with regression/ANOVA routines to allow the analysis of random
effects.

When independent variables are measured with error, then the estimate of the βs will be
biased towards 0 and the GLM will suffer from a lack of power.  This can be easily seen by
considering a dose-response analysis that has the following equation

Doseonsep̂Res ⋅+= βα .
Instead of the actual value of Dose, compute a set of random numbers and substitute it into the
equation.  The expected value of β would now be 0.  In general terms, the greater the error, the
stronger the bias towards 0.

As might be expected, this assumption is required only when one wishes to have a point
estimate of the population parameter.  Variables that are measured with error can indeed by used
in a GLM.  The researcher, however, encounters the burden of insuring that sample size is
sufficiently large to overcome any potential problems with power.


