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The Mathematical Theory of Regression

The basic formulation for multiple regression is diagramed in Figure 1. Here,
there are a series of predictor variables, termed x1, x2, . . . xn. There are p of these
predictor variables. Many statisticians refer to the predictor variables as independent
variables or IVs. There is a single predicted variable, y, also known as the dependent
variable or DV. Variable u is a residual, sometimes called an error variable or a
disturbance. The bis are partial regression coefficients; bi gives the predictive influence
of the ith IV on the DV controlling for all the other IVs. The term rij is the correlation
between the ith and jth IV and a is a constant reflecting the scale of measurement for y.

Now consider the kth indidivual in a sample. Let yk denote the kth individual's
score on the DV and let xki denote the kth individual's score on the ith IV. The multiple
regression model writes the kth individual's DV as a weighted linear combination of the
kth individual's scores on the p IVs plus the kth individual's score on the residual. In
algebra, we may write

kY  =  a +  1b k1X  +  2b k2X  +  ... pb kpX  +  kU (1)
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Figure 1.  Pictorial or path diagram of the multiple regression model.
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It is convenient to express the multiple regression model in matrix form. Let us write out
the structural equations for all N individual's in a sample:
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(2)

Let y denote the column vector of Yis; let X denote the (N by p+1) matrix of the Xijs; let b
denote the column vector consisting of a and the partial regression coefficients b1 through
bp; and let u denote the column vector of residuals. Equation (2) may be parismoniously
written in matrix form as

    y =  Xb +  u (3)
form as

Another way to write Equation (3) is to note that the observed y score for an
individual may be written as the sum of the predicted y plus error (u). For the kth
individual we may write

€ 

Yk =  ˆ Y k +Uk (4)
Let y denote the (N by 1) column vector of predicted scores. Then another way to

write Equation (3) is
      y =  ˆ y  +  u (5)

and with a little algebraic manipulation, we can prove that
      ̂  y  =  Xb. (6)

Estimation of the Parameters

We now want to find a solution for vector b. To do this we require some criteria
for picking reasonable values for the bis (and a) from all the possible values that the bis
can take. (Mathematically, when there are more observations than IVs, then there are
more structural equations than there are unknowns and the solution is overdetermined.)
The traditional criterion for selecting the bis is that we want those that minimize the
square prediction errors. That is, we want to minimize
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) (7)The process of minimizing a function is dealt with by differential calculus. We want to take the partial derivative of the function we want to minimize with respect to the unknowns (i.e., the elements of vector 

∂ ′ u u
∂b

 =  
∂(y -  Xb ′ ) (y -  Xb)

∂b
 =  0 (8)

We need not be concerned with the mechanics of reducing Equation (8), so set us state
the result:

( ′ X X)b =  ′ X y (9)
yielding

€ 

b =  ( ′ X X -1) Xy . (10)
Recall that (X'X) is the sum of squares and cross products matrix uncorrected for

the mean or the USSCP matrix for the xijs (including the column vector of 1's in the first
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column of X). The vector (X'y) is the sum of cross products between matrix X' and
vector y. Hence vector b is estimated as the inverse of the USSCP matrix postmultipled
by the sum of cross products vector between the independent variables and the dependent
variable.

The covariance matrix for the elements of b is
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Var(b) =  ( ′ X X -1) error
2σ

where σ2
e is the error variance. The error variance is estimated by the mean square error

which is the sum of squares for the residuals divided by its degrees of freedom. Let s2

denote this estimate of σ2
e. Then,
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Multiple regression programs estimate the variance-covariance matrix by replacing σ2
e

with s2 giving
The standard error for the ith parameter is simply the square root of the ith diagonal
element of the matrix

ˆ V ar(b)  =  ( ′ X X -1) 2s
The magnitude of a bi is determined by three factors: (1) the magnitude of the

direct predictability of Xi on Y; (2) the scale of measurement for Y; and (3) the scale of
measurement for Xi. When the scale of measurement for the variables is arbitrary, it is
customary to express the partial regression coefficients as standardized partial regression
coefficients. The standardized coefficients are the b weights that one would obtain if one
were to standardize every variable to a mean of 0.0 and a variance of 1.0 prior to the
regression analysis. That is, the standardized coefficients are the coefficients in the
equation

yZ  =  1β 1xZ  +  ... + pβ pxZ  +  uβ uZ
The intercept term is not written because it is 0 when the variables are standardized.
Similarly, a standardized weight (βu) is added to the standardized residual. To convert
unstandardized regression coefficients to standardized coefficients, use the following
equation

iβ  =  ib  iXσ
Yσ

where σXi is the standard deviation of the ith IV and σY is the standard deviation of the
dependent variable.

Standardized regression coefficients are directly comparable to one another. That
is, a β of .20 indicates a stronger direct predictive relationship than a β of .15.

Regression, Semipartial, and Partial Correlation

In this section, we want to obtain a deeper appreciation for the terms direct
predictive effects, indirect predictive effects, and total predictive effects that were used
rather glibly above. To do this, consider a regression model with two IVs. For
convenience, we will assume that all variables are standardized.
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The relationship among the variances and covariances of the three variables may
be depicted by the Venn diagram in Figure 2, adapted from Cohen and Cohen (1983).
The area of each circle is the variance for the appropriate variable, 1.0 in this case
because the variables have been standardized. The variance that variables X1 and Y have
in common is the area a + c, the variance in common between variables X2 and Y is area
b + c, and the variance in common between variables X1 and X2 is area c + d. Areas e, f,
and g denote the variance unique to respectively variables x1, y, and x2. Hence, area e is
equivalent to the variance of the residual.

Recall that the square of the correlation between two variables gives the
proportion of variance in one variable predicted by the other variable.  Hence, the squared
correlation between variables Y and X1 is a + c and the squared correlation between Y and
X2 is b + c. The area a + b + c is the proportion of variance in Y that is predictable from
X1 and X2 jointly. This is known as the square of the multiple correlation, usually denoted
as R2. In the case of two IVs, it is simple to obtain an estimate of R2. It is simply

2R  =  (a +  b +  c )
In Figure 2, the squared correlation between one IV, say X1, and Y is the sum of

two areas, a + c in this case. Area c is the proportion of variance in Yexplained by both X1
and X2. Area a is the proportion of variance in Y explained by X1 uniquely. Similarly, area
b is the proportion of variance in Y explained by X2 uniquely. These unique areas are the
squared semipartial correlations between the respective variables and the DV, sometimes
known as the part correlation. The semipartial correlation gives the increment in R2 that
occurs when the variable is added to the regression equation. Consider a simple
univariate regression of Yon X1. The squared multiple correlation in this case is (a + c). If
we now add variable X2, we increase the preditability of Y by area b. This correlation is
called semipartial because it is the correlation between two variables when the variance
of a third variable is removed from one and only one variable. The semipartial
correlations may be computed directly from the first-order correlations:

Y(1.2)r  =  a =  
r( 1X ,Y ) -  r( 2X ,Y )r( 1X , 2X )

1 -  r( 1X , 2X 2)
A related index of association between two variables is the partial correlation.

The squared partial correlation is the proportion of variance in Y that is predictable from
X1 and that is not predictable from X2. Consider the squared partial correlation between X1
and Y controlling for X2. We first remove the variance in Y that is predictable from X2 or
area (b + c). The remaining variance in Y is (a + e). The proportion of this variance that
is predictable from X1 is a. Hence, the squared partial correlation is

y1.2
2r  =  

a

a +  e
Just as the semipartial correlation may be derived from the first-order correlations,

so may the partial correlation. The formula is

Y1.2r  =  
r( 1X ,Y ) -  r( 2X ,Y)r( 1X , 2X )
(1 -  r ( 2X ,Y 2) )(1 -  r( 1X , 2X 2) )

Another meaning of the partial correlation is that it is the correlation between the
residuals of two variables that have been regressed on the third variable. Suppose that we
regressed X1 on X and calculated the residuals. Call the residuals U1. Now suppose that
we regressed Y on X2 and calculated the residuals, say variable UY. The correlation
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between U1 and UY is equivalent to the partial correlation between X1 and Y controlling for
X2. Hence, the partial correlation squared is the proportion of common variance between
two variables when the variance predictable from a third variable has been removed from
both variables.

The Squared Multiple Correlation

There are several equivalent formulas for the squared multiple correlation. One
classic derivation is to express the total sum of squares for y or SSt in terms of the sums of
squares due to prediction (the sum of squares for regression or SSr) and the sum of
squares due to lack of prediction (the sum of squares error or SSe. In this case the term
sum of squares refers to the sum of squared deviations from the mean. Let us consider the
regression equation for the ith individual, or

iY  =  iˆ Y  +  iU (X)
Now subtract the y mean from both sides of (21), giving

Yi -  Y =  ( ˆ Y  -  Y ) +  iU (X)
Now square both sides

( iY  -  Y 2)  =  ( ˆ Y i -  Y 2)  +  2( ˆ Y i -  Y ) iU  +  i
2U (X)

and sum over the the N individuals,

i=1

N

∑(Yi -  Y 2)  =  
i=1

N

∑( ˆ Y i  -  Y 2)  +  2
i=1

N

∑( ˆ Y i  -  Y ) iU  +  
i =1

N

∑ i
2U (X)

One can demonstrate (though we shall not do so here) that the residuals are uncorrelated
with the predicted y. Hence
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and Equation 24 becomes
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t r eSS  =  SS  +  SS (X)

The squared multiple correlation is the sum of squares for regression divided by
the total sum of squares, or

€ 

2R  =  rSS
rSS  +  eSS

(X)

Another formula for the squared multiple correlation may be written in terms of
the bis and the covariances among the IVs,

2R  =  i=1

p
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∑ ib jb cov( iX , jX )
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2σ

An analogous expression may be written for the standardized case:
2R  =  

i=1

p

∑
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p

∑ iβ jβ r( iX , jX ) .
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Yet another way to look at the multiple correlation is the correlation between
observed Y and predicted Y, or R2 = (Y, ˆ Y ) .

Adjusted R2

Any two data points may be connected by a straight line. Hence, if there are only
two observations for X and Y, the two variables will be perfectly correlated, even if the
population correlation between the two variables is 0.0. In general, it turns out that any (p
+ 1) data points can be perfectly explained by a p dimensional surface. The number of
predictors in a regression equation corresponds to the dimensionality of a linear problem
and the number of subjects corresponds to the number of data points. Hence, if N, the
number of subjects is, say, 5, their score on one variable can be perfectly predicted by
regressing that variable on 4 other variables, even if the population correlation between
these four IVs and the DV is 0.0. Obviously this introduces a bias into regression analysis.
The effect of this bias depends upon the ratio of the number of subjects to the number of
variables. When this ratio is small, R tends to be increasingly biased. As this ratio
becomes larger, the bias tends to become smaller.

To avoid this bias, most computer packages also calculate an adjusted R2. To see
how this adjustment works, write the squared multiple correlation as

2 e
2

y
2

R  =  1 -  σ

σ where σe
2 is the variance due to error. With N subjects and p predictors, an

unbiased estimate of σe
2 is the sum of squares for error divided by its degrees of freedom,

or

e
2 e =  SS

N -  p -  1
$σ

Similarly, SSy/(N - 1) provided an unbiased estimate of σY
2. Substitute both of these

quantities into Equation (31). Now the sample squared multiple correlation may be
written as R2 = 1 - SSe/SSY, so SSe = (1 - R2)SSY. Substituting this expression for SSe into
the equation gives an adjusted R2:

adj
2 2R  =  1 -  

N -  1

N -  p -  1
 (1 -  R )

A disadvantage with this adjustment is that it may yield negative R2. In such cases, it is
recommended that the reported R2 be 0.

Testing for Significance

There are surprisingly few assumptions required for fitting a regression model to
data. About the only mathematical restrictions are that the elements of vector b be free
and that the observations (i.e., the rows in matrix X) be independent. Another restriction
usually applied is that no single IV be a perfect linear combination of the other IVs. If one
variable is a perfect linear combination of the other variables then the matrix X'X is
singular and cannot be inverted, preventing use of equation (11) to solve for the
parameter estimates.
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However, there are several important assumptions required to test the significance
of a regression model.  Primary among them are two major assumptions about the
residuals. First, for every value of Y, the residuals,Y − ˆ Y , are assumed to be normally
distributed. Second is the assumption of homoscedasticity. That is, for every value of Y, it
is assumed that the residuals have a constant variance, σe

2.
A second set of assumptions involved the elements in matrix X. It is assumed that

these elements are fixed or not subject to sampling fluctuation, as if one were performing
an experiment and fixing the values in X. It is also assumed that these elements are not
subject to measurement error. Because of these assumptions, the elements of X may be
treated as constants from one replication of the study to another replication.
When these assumptions are met, then an F test is usually employed to test the whole
regression model. That is, if the true population values for all the bis is 0, then the mean
squares for the regression divided by the mean square error will be distributed as an F
statistic:

F =  MS

MS
 =  

SS
p

SS
N -  p -  1

r

e

r

e

with p degrees of freedom for the numerator and N - p - 1 degrees of freedom for the
denominator. The F statistic may also be written as a function of R2,

F =  R (N -  p -  1)

(1 -  R )p

2

2

Note that this is a test for the regression model as a whole and is not a test of its
individual components.

In addition to assessing the adequacy of the regression model, it is customary to
test each regression coefficient against its standard error. The formula for the standard
errors of the bis was developed above and need not concern us here. What is important is
that if the assumptions for significance testing are met and, in addition, if the true
population value of bi is 0, then bi divided by its standard error will be distributed as a t
with N - p - 1 degrees of freedom.

Simultaneous, Hierarchical, and Stepwise Regression

In the formulations above, it was assumed that a DV is regressed upon a set of p
variables and interest is only in that set of p variables. This may be termed simultaneous
multiple regression. There are cases in which one wants to compare a set of q IVs with a
subset or superset of p variables, p ≠ q, to test such problems as whether one gets a
significant increment in prediction by adding several variables. A second major reason
for interest in sub- or supersets of variables is in statistical control. Suppose, for example,
one wanted to predict WAIS performance IQ in the elderly as a function of social support
systems. It might be that age is a confounding factor that influences IQ. One strategy
would be to regress performance IQ on age for the sample, output the residuals, and then
correlated those residuals with the index of social support. Another and equivalent way is
to regress WAIS IQ on age and social support but enter age into the equation first. This is
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an example of hierarchical multiple regression in which one set of variables is first
entered into the equation (age, in this case) to statistically control for their predictive
effect before another set of variables (social support) is assessed.

To examine hierarchial regression, assume that we are interested in controlling for
m variables (termed the "control" variables) and testing for the predictive effects of q
variables (termed the "interest" variables), so that the total number of IVs in the
regression equation is p = m + q.  If we were to enter all p variables into the regression
equation, we would be interested in the set of m variables, controlling for the set of q
variables, and in the set of q variables, controlling for the set of m variables. But that is
not what we hypothesize. We want to control for the set of m variables first and then
examine the effect of the q variables. In a sense, we want to perform two regressions. The
first regressing y on the set of m control variables. The second, to test the predictive
effects of the q variables on the residuals from the first regression.
In hierarchical analysis the regression sum of squares for y is decomposed into three
additive parts: (1) SSm or the sum of squares due to the m control variables; (2) SSq|m or
the sum of squares due to the q "interest" variables given the m control variables; (3) SSe

or sum of squares error. Thus,
y m q|m eSS  =  SS  +  SS  +  SS

It is important to note that SSq|m is not equivalant to the sum of squares due to the q
variables that would be calculated if all p variables were entered into the equation
simultaneously

Similarly, we may decompose the R2 for the total set of p variables into two parts.
The first part due to the m control variables and the second part due to the q "interest"
variables controlling for the m variables, or

p
2

m
2

q|m
2R  =  R  +  R (1)

The term Rq|m
2 is referred to as the increment in R2 accounted for by the addition of the q

interest variables into the equation.
The main interest in hierarchical multiple regression is in determining whether the

q "interest" variables add significant predictability of y after the predictability of the m
control variables has been taken into account. To do this one may construct an F
increment or an F statistic that tests the increment in predictability given by adding the q
"interest" variables to the equation:

inc
p
2

m
2

p
2

F  =  
R  -  R
1 -  R

  
N -  m -  q -  1

q
•

(1)
where Rp

2 is the R2 for all p variables and R2
m is the R2 for the m control variables. The

degrees of freedom for the numerator of the F ratio equals q and the degrees of freedom
for the demonimator equals (N - m - q - 1).

In hierarchical regression, variables are entered into the regression equation in the
order of interest, theory, or hypothesis. Stepwise regression, in contrast, enters the
variables in order of their statistical predictability. There are three modes to stepwise
regression, forward selection, backward elimination, and pure stepwise, and the three do
not necessarily agree all the time. In forward stepwise regression, the IV with the highest
correltion with y is first entered into the equation. The second entry is the variable with
the highest semipartial correlation given the first variable. Of all the (p - 1) variables
remaining, this is the variable that would generate the highest R2 if it were entered. Of all
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the (p - 2) remainging variables, the one that would result in the highest R2 is entered
next, and so on. Hence, all p variables may be ordered in terms of their predictability.
Alternately, the order may be stopped at some arbitrary criterion, frequently whether the
probability of Finc is greater than .05.

In backward stepwise regression, the order is reversed. The first step is the entry
of all p variables. Then the one responsible for the smallest increment in R2 is dropped.
The (p - 1) variables are entered and the one giving the smallest R2 increment is dropped,
etc.

Pure stepwise regression combines elements of both forward selection and
backward elimination. The procedure is similar to forward selection but differs from it in
that at each stage of entry, variables are assessed for their contribution to R2. If a variable
does not make a significant contribution, then it is dropped from the equation. In this
way, a variable may be entered on, say, step 1 but dropped on step 5.

The aim of stepwise regression is to obtain an approximation to the best linear
combination of IVs that explain the variance of the DV. The method is essentially
atheoretical. It is useful only when one requires predictability irrespective of justification
of theory.

Diagnostics

There are three major areas used to diagnose the adequacy of a multiple
regression model. The first consists of the magnitude of the correlation among the IVs.
The second is an examination of the residuals. The third is the analysis of influential data
points. We deal with each in turn.

As mentioned above, when one IV is a perfect linear combination of the other IVs,
the matrix X'X does not have a unique inverse and the parameters cannot be estimated.
This is, in effect, the limiting (i.e., most extreme) case of a condition known as
multicollinearity. As the multiple correlation between any one IV and the remaining IVs
approaches 1.0, multicollinearity becomes a problem.

Multicollinearilty affects the interpretation of the bis, not the magnitude of R2. As
IVs become increasingly correlated the diagonal elements of (X'X)-1 become larger,
increasing the standard errors of the parameter estimates (see Equation (14)). Hence, the
confidence interval of the bis increases, making it more difficult to test for significance.

In addition to large standard errors for the parameters, problems with
multicollinearity may be signalled by the statistic tolerance which many computer
programs output for each IV . Tolerance for the ith IV is (1 - Ri

2) where Ri
2 is the squared

muliple correlation of the ith variable regressed upon the (p - 1) remaining IVs. Other
statisticians prefer to interpret the VIF or variance inflation factor which is the reciprocal
of tolerance. Low tolerances or high VIFs are symptomatic of multicollinearity problems.

What does one do when faced with multicollinearity? One easy solution is simply
to drop the offending variable from the equation. More advanced statistical techniques
such as ridge regression or regression on principal components may also be employed.

A second major area for diagnostics is an analysis of the residuals. Because
assumptions about the residuals underly the tests for statistical significance, many
statisticians suggest that a thorough analysis of the residuals accompany a regression.
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Many computer packages output plots of the residuals as a function of the predicted y so
that one may assess the assumptions of normality of the residuals, linearity, and
homoscedasticity.

In addition, several packages have the option of printing out each case with its
residual and several different statistcs that identify two problems: (1) those that are
outliers; and (2) influential datapoints, i.e., those observations that have an inordinate
influence on the regression results.
In bivariate regression, outliers may be readily identified by examination of the plot of x
and y. The situation is more complicated with more than a single IV.There are several
different measures for outliers. One set of indices test the extent to which an observation
differs from the center of the distribution on the p IVs. One of these indices is the
Mahalanobis distance which seeks to find a multivairate outlier. For the ith observation,
the Mahalanobis distance is defined as

iD  =  ( ix  -  x ′ ) -1S ( ix  -  x) (1)
where xi is the vector of values for the ith observation on the IVs, x is the vector of
means, and S is the unbiased estimate of the covariance matrix. Sometimes this value is
expressed in terms of leverage:

ih  =  
1
N

 +  (N -  1) iD (1)

Both the Mahalanobis distance and leverage index the extent to which the ith
observation differs from the center of the distribution on the x vector. It is also possible to
be an outlier in terms of the residuals. It is customary to standardize the residuals by
dividing the residual by its standard error to aid inspection of their values. The standard
error for the residual on the ith observation may be defined as

se( iu ) (1)
where hi is the leverage for the ith subject as defined by Equation (40). The standard error
may be estimated in one of two ways. First, the square root of the mean square error from
the regression model may be used. In this case the residual divided by the estimated
standard error is termed an internalized studentized residual. The second estimate of σe

deletes the ith observation from its calculation. The residual divided by this standard error
is called an externalized studentized residual. Unfortumately, there is some confusion in
the literature and in software packages over what constitutes a "studentized residual,"
either the internalized or esternalized residual, but the difference between the two is
generally small when N is relatively large.

An outlier need not have an undue influence on the regression coefficients or R2.
Cook's distance (d) is generally used to identify an observation that may be highly
influential in a regression analysis. Cook's d for the ith observation is defined as

id  =  j=1

N

∑( j
(-i)ˆ y  -  jˆ y 2)

(p +  1) e
2σ

(1)

where yj
(-i) is the predicted value for the jth observation if the ith observation has been

omitted from the regression analysis. A Cook's distance of 1 or greater is generally
regarded as large. Cook's distance may also be written as a function of both the leverage
and the internalized studentized residual. Hence, an observation may have a large Cook's
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distance by having a large leverage (i.e., being an outlier in terms of the IVs) or a large
residual (being an outlier in terms of the regression model).


