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Multivariate Analysis of Variance (MANOVA): I. Theory

Introduction
The purpose of a t test is to assess the likelihood that the means for two groups

are sampled from the same sampling distribution of means.  The purpose of an ANOVA
is to test whether the means for two or more groups are taken from the same sampling
distribution.  The multivariate equivalent of the t test is Hotelling’s T2.  Hotelling’s T2

tests whether the two vectors of means for the two groups are sampled from the same
sampling distribution.  MANOVA is the multivariate analogue to Hotelling's T2.  The
purpose of MANOVA is to test whether the vectors of means for the two or more
groups are sampled from the same sampling distribution.  Just as Hotelling's T2 will
provide a measure of the likelihood of picking two random vectors of means out of the
same hat, MANOVA gives a measure of the overall likelihood of picking two or more
random vectors of means out of the same hat.

There are two major situations in which MANOVA is used.  The first is when
there are several correlated dependent variables, and the researcher desires a single, overall
statistical test on this set of variables instead of performing multiple individual tests.  The
second, and in some cases, the more important purpose is to explore how independent
variables influence some patterning of response on the dependent variables.  Here, one
literally uses an analogue of contrast codes on the dependent variables to test hypotheses
about how the independent variables differentially predict the dependent variables.

MANOVA also has the same problems of multiple post hoc comparisons as
ANOVA.  An ANOVA gives one overall test of the equality of means for several groups
for a single variable.  The ANOVA will not tell you which groups differ from which other
groups. (Of course, with the judicious use of a priori contrast coding, one can overcome
this problem.)  The MANOVA gives one overall test of the equality of mean vectors for
several groups.  But it cannot tell you which groups differ from which other groups on
their mean vectors.  (As with ANOVA, it is also possible to overcome this problem
through the use of a priori contrast coding.)  In addition, MANOVA will not tell you
which variables are responsible for the differences in mean vectors.  Again, it is possible
to overcome this with proper contrast coding for the dependent variables

In this handout, we will first explore the nature of multivariate sampling and then
explore the logic behind MANOVA.

1. MANOVA: Multivariate Sampling
To understand MANOVA and multivariate sampling, let us first examine a

MANOVA design. Suppose a researcher in psychotherapy interested in the treatment
efficacy of depression randomly assigned clinic patients into four conditions: (1) a
placebo control group who received typical clinic psychotherapy and a placebo drug; (2)
a placebo cognitive therapy group who received the placebo medication and systematic
cognitive psychotherapy; (3) an active antidepressant medication group who received the
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typical clinic psychotherapy; and (4) an active medication group who received cognitive
therapy. This is a (2 x 2) factorial design with medication (placebo versus drug) as one
factor and type of psychotherapy (clinic versus cognitive) as the second factor. Studies
such as this one typically collect a variety of measures before treatment, during treatment,
and after treatment. To keep the example simple, we will focus only on three outcome
measures, say, Beck Depression Index scores (a self-rated depression inventory),
Hamilton Rating Scale scores (a clinician rated depression inventory), and Symptom
Checklist for Relatives (a rating scale that a relative completes on the patient--it was made
up for this example). High scores on all these measures indicate more depression; low
scores indicate normality. The data matrix would look like this:

Person   Drug Psychotherapy BDI HRS SCR

Sally placebo   cognitive  12   9   6
Mortimer   drug    clinic  10  13   7
Miranda placebo    clinic  16  12   4
  .    .      .   .   .   .
Waldo   drug   cognitive   8   3   2

For simplicity, assume the design is balanced with equal numbers of patients in all four
conditions. A univariate ANOVA on any single outcome measure would contain three
effects, a main effect for psychotherapy, a mean effect for medication, and an interaction
between psychotherapy and medication. The MANOVA will also contain the same three
effects. The univariate ANOVA main effect for psychotherapy tells whether the clinic
versus the cognitive therapy groups have different means, irrespective of their medication.
The MANOVA main effect for psychotherapy tells whether the clinic versus the
cognitive therapy group have different mean vectors irrespective of their medication; the
vectors in this case are the (3 x 1) column vectors of (BDI, HRS, and SCR) means. The
univariate ANOVA for medication tells whether the placebo group has a different mean
from the drug group irrespective of psychotherapy. The MANOVA main effect for
medication tells whether the placebo group has a different mean vector from the drug
group irrespective of psychotherapy. The univariate ANOVA interaction tells whether
the four means for a single variable differ from the value predicted from knowledge of the
main effects of psychotherapy and drug. The MANOVA interaction term tells whether
the four mean vectors differ from the vector predicted from knowledge of the main effects
of psychotherapy and drug.

If you are coming to the impression that a MANOVA has all the properties as an
ANOVA, you are correct. The only difference is that an ANOVA deals with a (1 x 1)
mean vector for any group while a MANOVA deals with a (p x 1) vector for any group, p
being the number of dependent variables, 3 in our example. Now let's think for a minute.
What is the variance-covariance matrix for a single variable? It is a (1 x 1) matrix that has
only one element, the variance of the variable. What is the variance-covariance matrix for p
variables? It is now a (p x p) matrix with the variances on the diagonal and the covariances
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on the off diagonals. The ANOVA partitions the (1 x 1) covariance matrix into a part due
to error and a part due to hypotheses (the two main effects and the interaction term as
described above). Or for our example, we can write

Vt = Vp + Vm + V(p*m) + Ve (1.1)

Equation (1.1) states that the total variability (Vt) is the sum of the variability due to
psychotherapy (Vp), the variability due to medication (Vm), the variability due to the
interaction of psychotherapy with medication (V(p*m)), and error variability (Ve).

The MANOVA likewise partitions its (p x p) covariance matrix into a part due to
error and a part due to hypotheses. Consequently, the MANOVA for our example will
have a (3 x 3) covariance matrix for total variability, a (3 x 3) covariance matrix due to
psychotherapy, a (3 x 3) covariance matrix due to medication, a (3 x 3) covariance matrix
due to the interaction of psychotherapy with medication, and a (3 x 3) covariance matrix
for error. Or we can now write

Vt = Vp + Vm + V(p*m) + Ve (1.2)

where V now stands for the appropriate (3 x 3) matrix. Note how equation (1.2) equals
(1.1) except that (1.2) is in matrix form. Actually, if we considered all the variances in a
univariate ANOVA as (1 by 1) matrices and wrote equation (1.1) in matrix form, we
would have equation (1.2).

Let's now interpret what these matrices in (1.2) mean. The Ve matrix will look like
this

  BDI   HRS   CSR
BDI   Ve1 cov(e1,e2) cov(e1,e3)
HRS cov(e2,e1)   Ve2 cov(e2,e3)
CSR cov(e3,e1) cov(e3,e2)   Ve3

The diagonal elements are the error variances. They have the same meaning as the error
variances in their univariate ANOVAs. In a univariate ANOVA the error variance is an
average variability within the four groups.  The error variance in MANOVA has the same
meaning.  That is, if we did a univariate ANOVA for the Beck Depression Inventory, the
error variance would be the mean squares within groups. ve1 would be the same means
squares within groups; it would literally be the same number as in the univariate analysis.
The same would hold for the mean squares within groups for the HRS and the CSR.

The only difference then is in the off diagonals. The off diagonal covariances for
the error matrix must all be interpreted as within group covariances. That is, cov(e1,e2)
tells us the extent to which individuals within a group who have high BDI scores also tend
to have high HRS scores. Because this is a covariance matrix, the matrix can be scaled to
correlations to ease inspection. For example, corr(e1,e2) = cov(e1,e2) (ve1ve2)-1/2.
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I suggest that you always have this error covariance matrix and its correlation
matrix printed and inspect the correlations. In theory, if you could measure a sufficient
number of factors, covariates, etc. so that the only remaining variability is due to random
noise, then these correlations should all go to 0. Inspection of these correlations is often a
sobering experience because it demonstrates how far we have to go to be able to predict
behavior.

What about the other matrices? In MANOVA, they will all have their analogues in
the univariate ANOVA. For example, the variance in BDI due to psychotherapy
calculated from a univariate ANOVA of the BDI would be the first diagonal element in
the Vp matrix. The variance of HRS calculated from a univariate ANOVA is the second
diagonal element in Vp. The variance in CSR due to the interaction between
psychotherapy and drug as calculated from a univariate ANOVA will be the third
diagonal element in V(p*m).

The off diagonal elements are all covariances and should be interpreted as between
group covariances. That is, in Vp, cov(1,2) = cov(BDI, HRS) tells us whether the
psychotherapy group with the highest mean score on BDI also has the highest mean score
on the HRS. If, for example, the cognitive therapy were more efficacious than the clinic
therapy, then we should expect that all the covariances in Vp be large and positive. Again,
cov(2,3) = cov(HRS, CSR) in the V(p*n) matrix has the following interpretation: if we
control for the main effects of psychotherapy and medication, then do groups with high
average scores on the Hamilton also tend to have high average scores on the relative's
checklist?

In theory, if there were no main effect for psychotherapy on any of the measures,
then all the elements of Vp will be 0. If there were no main effect for medication, then Vm

will be all 0's. And if there were no interaction, then all of V(p*m) would be 0's. It makes
sense to have these matrices calculated and printed out so that you can inspect them.
However, just as most programs for univariate ANOVAs do not give you the variance
components, most computer programs for MANOVA do not give you the variance
component matrices.  You can, however, calculate them by hand.

2. Understanding MANOVA
Understanding of MANOVA requires understanding of three basic principles.

They are:
• An understanding of univariate ANOVA.
• Remembering that mathematicians work very hard to be lazy.
• A little bit of matrix algebra.
Each of these topics will now be convered in detail.

2.1 Understanding Univariate ANOVA.
Let us review univariate ANOVA by examining the expected results of a simple

oneway ANOVA under the null hypothesis.  The overall logic of ANOVA is to obtain
two different estimates of the population variance; hence, the term analysis of variance.
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The first estimate is based on the variance within groups.  The second estimate of the
variance is based on the variance of the means of the groups.  Let us examine the logic
behind this by referring to an example of a oneway ANOVA.

Suppose we select four groups of equal size and measure them on a single variable.
Let n denote the sample size within each group.  The null hypothesis assumes that the
scores for inviduals in each of the four groups are all sampled from a single normal
distribution with mean µ and variance σ2. Thus, the expected value for the mean of the
first group is µ and the expected value of the variance of the first group is σ2, the expected
value for the mean of the second group is µ and the expected value of the variance of the
second group is σ2, etc.  The observed statistics and their expected values for this
ANOVA are given in Table 1.

Table 1.  Observed and expected means and variances of four groups in a oneway
ANOVA under the null hypothesis.

Group
1 2 3 4

Sample Size: n n n n

Means: Observed   X 1   X 2   X 3   X 4
Expected µ µ µ µ

Variances: Observed     s1
2

    s2
2

    s3
2

    s4
2

Expected σ2 σ2 σ2 σ2

Now concentrate on the rows for the variances in Table 1. There are four observed
variances, one for each group, and they all have expected values of σ2. Instead of having
four different estimates of σ2, we can obtain a better overall estimate of σ2 by simply
taking the average of the four estimates. That is,

      
) 
σ s2

2 =
s1

2 + s2
2 + s3

2 + s4
2

4
(2.1)

The notation       
) 
σ s2

2  is used to denote that this is the estimate of σ2 derived from the

observed variances. (Note that the only reason we could add up the four variances is
because the four groups are independent. Were they dependent in some way, this could
not be done.)

Now examine the four means.  A very famous theorem in statistics, the central
limit theorem, states that when scores are normally distributed with mean µ and variance
σ2, then the the sampling distribution of means based on size n will be normally
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distributed with an  overall mean of µ and variance σ2/n.  Thus, the four means in Table 1
will be sampled from a single normal distribution with mean µ and variance σ2/n.  A
second estimate of σ2 may now be obtained by going through three steps: (1) treat the
four means as raw scores, (2) calculate the variance of the four means, and (3) multiplying
the result by n. Let   x  denote the overall mean of the four means, then

      
) 
σ x 

2 = n
(x i − x )2

i=1

4

∑
4 −1

(2.2)

where      
) 
σ x 

2  denotes the estimate of σ2 based on the means and not the variance of the
means.

We now have two separate estimates of σ2, the first based on the within group
variances (      

) 
σ s2

2 ) and the second based on the means (      
) 
σ x 

2       σx 
2 ).  If we take a ratio of the two

estimates, we expect a value close to 1.0, or

      
E

) 
σ x 

2

) σ 
s2
2

 

 
 

 

 
 ≈ 1. (2.3)

This is the logic of the simple oneway ANOVA, although it is most often
expressed in different terms.  The estimate       

) 
σ s2

2  from equation (2.1) is the mean squares

within groups. The estimate       
) 
σ x 

2  from (2.2) is the mean squares between groups.   And the
ratio in (2.3) is the F ratio expected under the null hypothesis. In order to generalize to
any number of groups, say g groups, we would perform the same step but substitute g in
place of 4 in Equation (2.2).

Now the above derivations all pertain to the null hypothesis. The alternative
hypothesis states that at least one of the four groups has been sampled from a different
normal distribution than the other three means.  Here, for the sake of exposition, it is
assumed that scores in the four groups are sampled from different normal distributions
with respective means of µ1, µ2, µ3, and µ4, but with the same variance, σ2.

Because the variances do not differ, the estimate derived from the observed group
variances in equation (2.1), or       

) 
σ s2

2 , will remain a valid estimate of σ2.  However, the

variance derived from the means using equation (2.2) is no longer an estimate of σ2.  If we
performed the calculation on the right hand side of Equation (2.2), the expected results
would be

      

E n
( x i − x )2

i =1

4

∑
4 −1

 

 

 
  

 

 

 
  

= nσµ
2 +

) 
σ x 

2 . (2.4)
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Consequently, the expectation of the F ratio becomes

      
E(F) =

nσµ
2 +

) 
σ x 

2

) σ 
s2
2 =

) 
σ x 

2

) σ 
s2
2 +

nσµ
2

) σ 
s2
2 ≈1 +

nσµ
2

) σ 
s2
2 . (2.5)

Instead of having an expectation around 1.0 (which F has under the null hypothesis), the
expectation under the alternative hypothesis will be sometihing greater than 1.0.  Hence,
the larger the F statistic, the more likely that the null hypothesis is false.

2.2 Mathematicians Are Lazy
The second step in understanding MANOVA is the recognition that

mathematicians are lazy.  Mathematical indolence, as applied to MANOVA, is apparent
because mathematical statisticians do not bother to express the information in terms of
the estimates of variance that were outlined above.  Instead, all the information is
expressed in terms of sums of squares and cross products.  Although this may seem quite
foreign to the student, it does save steps in calculations--something that was important in
the past when computers were not available.  We can explore this logic by once again
returning to a simple oneway ANOVA.

Recall that the two estimates of the population variance in a oneway ANOVA are
termed mean squares.  Computationally, mean squares denote the quantity resulting from
dividing the sum of squares by its associated degrees of freedom.  The between group
mean squares--which will now be called the hypothesis mean squares, is

  
MSh =

SSh

dfh

and the within group mean squares--which will now be called the error mean squares, is

  
MSe =

SSe

df e

.

The F statistic for any hypothesis is defined as the mean squares for the
hypothesis divided by the mean squares for error.  Using a little algebra, the F statistic
can be shown to be the product of two ratios.  The first ratio is the degrees of freedom for
error divided by the degrees of freedom for the hypothesis.  The second ratio is the sum
of squares for the hypothesis divided by the sum of squares for error.  That is,
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F =
MSh

MSe

=

SSh

df h

SSe

df e

=
df e

dfh

SSh

SS e

 .

The role of mathematical laziness comes about by developing a new statistic--
called the A statistic here--that simplifies matters by removing the step of calculating the
mean squares.  The A statistic is simply the F statistic multiplied by the degrees of
freedom for the hypothesis and divided by the degrees of freedom for error, or

  
A =

df h

df e

F =
dfh

df e

df e

dfh

 
 
  

 
 SSh

SSe

=
SSh

SS e

 .

The chief advantage of using the A statistic is that one never has to go through the
trouble of calculating mean squares.  Hence, given the overriding principle of mathematical
indolence, that, of course, must be adhered to at all costs in statistics, it is preferable to
develop ANOVA tables using the A statistic instead of the F statistic and to develop
tables for the critical values of the A statistic to replace tables of critical values for the F
statistic.  Accordingly, we can refer to traditional ANOVA tables as “stupid,” and to
ANOVA tables using the F statistic as “enlightened.”

The following tables demonstrate the difference between a traditional, “stupid”
ANOVA and a modern, “enlightened” ANOVA.

Stupid ANOVA Table

Source
Sums of
Squares

Degrees of
Freedom

Mean
Squares F p

Hypothesis SSh dfh MSh

Error SSe dfe MSe

Total SSt dft

Critical Values of F (α = .05) (Stupid)

dfe (numerator)

dfh 1 2 3 4 5

1 161.45 199.50 215.71 224.58 230.16
2 18.51 19.00 19.16 19.25 19.30
3 10.13 9.55 9.28 9.12 9.01
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Enlightened ANOVA Table

Source
Sums of
Squares

Degrees of
Freedom A p

Hypothesis SSh dfh
Error SSe dfe
Total SSt dft

Critical Values of A (α = .05)(Enlightened)

dfe (numerator)

dfh 1 2 3 4 5

1 161.45 399.00 647.13 898.32 1150.80
2 9.26 19.00 28.74 38.50 48.25
3 3.38 6.37 9.28 12.16 15.02

2.3.  Vectors and Matrices
The final step in understanding MANOVA is to express the information in terms

of vectors and matrices.  Assume that instead of a single dependent variance in the
oneway ANOVA, there are three dependent variables.  Under the null hypothesis, it is
assumed that scores on the three variables for each of the four groups are sampled from a
trivariate normal distribution mean vector

  

µ =
µ1

µ2

µ3

 

 

 
 

 

 

 
 

and variance-covariance matrix

  

Σ =
σ1

2 ρ12σ1σ2 ρ13σ1σ3

ρ12σ1σ2 σ2
2 ρ23σ2σ3

ρ13σ1σ3 ρ23σ2σ3 σ3
2

 

 

 
 

 

 

 
 

.

(Recall that the quantity   ρ12σ1σ2  equals the covariance between variables 1 and 2.)
Under the null hypothesis, the scores for all those in group 1 will be sampled from

this distribution, as will the scores for all those individuals in groups 2, 3, and 4.  The
observed and expected values for the four groups are given in Table 2.



© Gregory Carey, 1998 MANOVA: I - 10

Table 2.  Observed and expected statistics for the mean vectors and the variance-
covariance matrices of four groups in a oneway MANOVA under the null hypothesis.

Group
1 2 3 4

Sample Size: n n n n

Mean Vector: Observed   x 1   x 2   x 3   x 4
Expected µ µ µ µ

Covariance Matrix:
Observed S 1 S 2 S 3 S 4

Expected Σ Σ Σ Σ

Note the resemblance between Tables 1 and 2. The only difference is that Table 2
is written in matrix notation. Indeed, if we consider the elements in Table 1 as (1 by 1)
vectors or (1 by 1) matrices and then rewrite Table 1, we would get Table 2!

Once again, how can we obtain different estimates of Σ?  Again, concentrate on
the rows marked variances in Table 2. The easiest way to estimate Σ is to add up the
covariance matrices for the four groups and divide by 4--or, in other words, take the
average observed covariance matrix:

    
ˆ Σ w =

S1 + S2 + S3 + S4

4
. (2.6)

Note how (2.6) is identical to (2.1) except that (2.6) is expressed in matrix notation.
What about the means?  Under the null hypothesis, the means will be sampled

from a trivariate normal distribution with mean vector µ and covariance matrix Σ/n.
Consequently, to obtain an estimate of Σ based on the mean vectors for the four groups,
we proceed with the same logic as that in the oneway ANOVAiven in section 2.1, but
now apply it to the vectors of means.  That is, treat the means as if they were raw scores
and calculate the covariance matrix for the three “variables;”  then multiply this result by
n.  Let   X ij  denote the mean for the ith group on the jth variable.  The data would look like

this:

    

X 11 X 12 X 13

X 21 X 22 X 23

X 31 X 32 X 33

X 41 X 42 X 43
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This is identical to a data matrix with four observations and three variables.  In this case,
the observations are the four groups and the “scores” or numbers are the means.  Let

    SSCPX  denote the sums of squares and cross products matrix used to calculate the

covariance matrix for these three variables.  Then the estimate of Σ based on the means of
the four groups will be

      
ˆ Σ b = n

SSCPX 

4 −1
. (2.7)

Note how (2.7) is identical in form to (2.2) except that (2.7) is expressed in matrix
notation.

We now have two different estimates of Σ.  The first,   
ˆ Σ w , is derived from the

average covariance matrix within the groups,  and the second,   
ˆ Σ b ,  is derived from the

covariance matrix for the group mean vectors. Because both of them measure the same
quantity, we expect

      E( ˆ Σ b ˆ Σ w
-1 ) = I. (2.8)

or an identity matrix. Note that (2.8) is identical to (2.3) except that (2.8) is written in
matrix notation. If the matrices in (2.8) were simply (1 by 1) matrices then their
expectation would be a (1 by 1) identity matrix or simply 1.0. Just what we got in (2.3)!

Now examine the alternative hypothesis. Under the alternative hypothesis it is
assumed that each group is sampled from a multivariate normal distribution that has the
same covariance matrix, say Σ.  Consequently, the average of the covariance matrices for
the four groups in equation (2.6) remains an estimate of Σ.  However, under the alternate
hypothesis, the mean vector for at least one group is sampled from a multivariate normal
with a different mean vector than the other groups. Consequently, the covariance matrix
for the observed mean vectors will reflect the covariance due to true mean differences, say
Σµ , plus the covariance matrix for sampling error, Σ/n. Thus, multiplying the covariance

matrix of the means by n now gives

  nΣµ + Σ . (2.9)

Once again, (2.9) is the same as (2.4) except for its expression in matrix notation.  What is
the expectation of the estimate from the observed means postmultiplied by the estimate
from the observed covariance matrices under the alternative hypothesis?  Substituting the
expression in (2.9) for   

ˆ Σ b  in Equation (2.8) gives

      E( ˆ Σ b ˆ Σ w
-1 ) = (nΣµ + Σ)Σ−1 = nΣµΣ+ ΣΣ−1 = nΣµΣ+ I . (2.10)
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Although it is a bit difficult to see how, (2.10) is the same as (2.5) except that (2.10) is
expressed in matrix notation.  Note that (2.10) is the sum of an identity matrix and
another term. The identity matrix will have 1's on the diagonal, so the diagonals of the
result will always be "1 + something." That "something" will always be a positive number
[for technical reasons in matrix algebra].  Consequently, the diagonals in (2.10) will
always be greater than 1.0. Again, if we consider the matrices in (2.10) as (1 by 1)
matrices, we can verify that the expectation will always be greater than 1.0, just as we
found in (2.5).

This exercise demonstrates how MANOVA is a natural extension of ANOVA.
The only remaining point is to add the laziness of mathematical statisticians.  In
ANOVA, we saw how this laziness saved a compuational step by avoiding calculations
of the means squares (which is simply another term for the variance) and expressing all
the information in terms of the sums of squares.  The same applies to MANOVA, instead
of calculating the mean squares and mean products matrix (which is simply another term
for a covariance matrix), MANOVA avoids this step by expressing all the information in
terms of the sums of squares and cross products matrices.

The A statistic developed in section 2.2 was simply the ratio of the sum of
squares for an hypothesis and the sum of squares for error.  Let H denote the hypothesis
sums of squares and cross products matrix, and let E denote the error sums of squares and
cross products matrix.  The multivariate equivalent of the A statistic is the matrix A which
is

A = HE-1 (2.11)

Verify how Equation 2.11 is the matrix analogue of the A statistic given in section 2.2.
Notice how mean squares (or, in other terms, covariance matrices) disappear from
MANOVA just as they did for ANOVA.  All hypothesis tests may be performed on
matrix A.  Parenthetically, note that because both H and E are symmetric, HE-1 = E-1H.
This is one special case where the order of matrix multiplication does not matter.

3.0.  Hypothesis Testing in MANOVA
All current MANOVA tests are made on A = E-1H.  That's the good news.  The

bad news is that there are four different multivariate tests that are made on E-1H.  Each of
the four test statistics has its own associated F ratio.  In some cases the four tests give an
exact F ratio for testing the null hypothesis and in other cases the F ratio is approximated.
The reason for four different statistics and for approximations is that the mathematics of
MANOVA get so complicated in some cases that no one has ever been able to solve
them.  (Technically, the math folks can't figure out the sampling distribution of the F
statistic in some multivariate cases.)

To understand MANOVA, it is not necessary to understand the derivation of the
statistics.  Here, all that is mentioned is their names and some properties.  In terms of
notation, assume that there are q dependent variables in the MANOVA, and let λi denote
the ith eigenvalue of matrix A which, of course, equals HE-1.
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The first statistic is Pillai's trace.  Some statisticians consider it to be the most
powerful and most robust of the four statistics.  The formula is

      
Pillai's trace =  trace[H(H + E)−1] =

λ i

1+λ ii=1

q

∑ . (3.1)

The second test statistic is Hotelling-Lawley's trace.

      
Hotelling-Lawley's trace =  trace(A ) = trace(HE−1) = λi

i=1

q

∑ . (3.2)

The third is Wilk's lambda (Λ).  (Here, the upper case, Greek Λ is used for Wilk’s lambda
to avoid confusion with the lower case, Greek λ often used to denote an eigenvalue.
However, many texts use the lower case lambda as the notation for Wilk’s lambda.)
Wilk’s Λ was the first MANOVA test statistic developed and is very important for
several multivariate procedures in addition to MANOVA.

      
Wilk's lambda = Λ =

| E |
| H + E |

=
1

1+ λ ii=1

q

∏ . (3.3)

The quantity (1 - Λ) is often interpreted as the proportion of variance in the dependent
variables explained by the model effect.  However, this quantity is not unbiased and can
be quite misleading in small samples.

The fourth and last statistic is Roy's largest root. This gives an upper bound for
the F statistic.

Roy's largest root = max(λi). (3.4)

or the maximum eigenvalue of A = HE-1.  (Recall that a "root" is another name for an
eigenvalue.) Hence, this statistic could also be called Roy's largest eigenvalue. (In case you
know where Roy's smallest root is, please let him know.)

Note how all the formula in equations (3.1) through (3.4) are based on the
eigenvalues of A = HE-1.  This is the major reason why statstical programs such as SAS
print out the eigenvalues and eigenvectors of A = HE-1.

Once the statistics in (3.1) through (3.4) are obtained, they are translated into F
statistics in order to test the null hypothesis.  The reason for this translation is identical
to the reason for converting Hotelling's T2--the easy availability of published tables of the
F distribution.  The important issue to recognize is that in some cases, the F statistic is
exact and in other cases it is approximate.  Good statistical packages  will inform you
whether the F is exact or approximate.

In some cases, the four will generate identical F statistics and identical
probabilities. In other's they will differ. When they differ, Pillai's trace is often used
because it is the most powerful and robust.  Because Roy's largest root is an upper bound
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on F, it will give a lower bound estimate of the probability of F.  Thus, Roy's largest root
is generally disregarded when it is significant but the others are not significant.


