
© Gregory Carey, 1998 MANOVA II  - 1

Multivariate Analysis of Variance (MANOVA) II:
Practical Guide to ANOVA and MANOVA for SAS

Terminology for ANOVA
This chapter provides practical points in performing ANOVA and MANOVA.

First, it is necessary to develop some terminology.  Let us being with the Kurlu example.
The structure of the data would look like this:

Data Layout for the Kurlu Example

Within Subjects
Between Subjects Pretest Posttest

Group Subject SI SF OA SI SF OA

1 (Control) 1
. .
1 (Control) 10
2 (Cognitive) 1
. .
2 (Cognitive) 10
3 (Behavioral) 1
. .
3 (Behavioral) 10
4 (Abreaction) 1
. .
4 (Abreaction) 10

The observations are the 40 patients who participated in the study.  It is always
recommended that the observations form the rows of the data matrix with one and only
one row for an observation.  For example, the data for the first observation in the Kurlu
data set, Herkimer Schwatzbiggle, is given below.

Name Group
Sub-
ject

si_
pre

sf_
pre

oi_
pre

si_
post

sf_
post

oi_
post

Herkimer
Schwatzbiggle Control 1 46 68 70 72 74 82

In entering data into a database or spreadsheet, it is entirely legitimate to make two rows
for Herk, one for his pre-test scores and the second for the post-test scores.  The data
would then be structured like this:
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Name Group Subject Time si sf oa

Herkimer
Schwatzbiggle Control 1 Pre 46 68 70
Herkimer
Schwatzbiggle Control 1 Post 72 74 82

There is indeed nothing the matter with the structure in this table.  One can
perform ANOVAs and MANOVAs using this structure.  However, setting up the
ANOVA model for the structure in this table is much more difficult and error-prone than
it is for the structure in the previous table.  Consequently, for students learning these
techniques, it is highly recommended to make certain that each row of the data matrix
contains one and only one observational unit.

Returning to the data, we notice that the observations are organized into groups
corresponding to the four therapies.  The analysis will use the variable Group as the
independent variable or predictor variable.  In ANOVA terms, an independent variable
that classify individual observations into categories is called an ANOVA factor.  The
term “factor” in this sense should not be confused with a “factor” from factor analysis.
In the Kurlu example, there is one and only one factor.  When there is only one factor, the
design is referred to as a oneway ANOVA.

When there is more than a single ANOVA factor, the design is called a factorial
design.  For example, suppose that the patients in the Kurlu study were subdivided into
those who had previous treatment for the disorder and those who had no previous
treatment.  If the ANOVA model then used the presence or absence of prior treatment as
an independent variable, the design would look like that in the following table.

Therapy:

Prior Treatment: Control Cognitive Behavioral Abreaction

No

Yes

Here, the ANOVA model would be referred to as a twoway, factorial design or
sometimes just a twoway design.  If there were three ANOVA factors, the design would
be called a threeway, factorial ANOVA or simply a threeway ANOVA.

The individual groups within an ANOVA factor are referred to as the levels of
the factor.  For example, the Therapy factor in the above table has four levels (Control,
Cognitive, Behavioral, and Abreaction) and the Previous Treatment factor as two levels
(Yes and No).  The term “level” does not necessarily imply that the groups are ordered
according to some scale of magnitude.  The term may simply refer to the different
categories of an ANOVA factor without implication that one category has more of
something than the next category.  An ANOVA factor like sex, with its levels of female
and male, would be an example of this.
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A continuous variable entered into an ANOVA model is referred to as a
covariate.  Occasionally, when a covariate is used, the design is called an analysis of
covariance or ANCOVA.  In the Kurlu example, age of the patient might be used as a
covariate.

In the Kurlu example, there were exactly 10 individuals in each of the four cells.
When the number of individuals is identical in each cell of an ANOVA, the design is called
a balanced or orthogonal design.  When one or more cells have different numbers of
individuals, then the design is called unbalanced or nonothogonal.  It is very
important to determine whether a design is orthogonal or nonorthogonal before proceding
with the analysis.  If a design is nonorthogonal, then there is more than one solution to the
ANOVA table.  It then becomes important to determine which of the solutions is
preferable.

SAS Code for the Analysis of Variance
SAS has two basic procedures to use with ANOVA, and several more

sophisticated procedures to deal with very specialized designs or problems with
ANOVA.  The two basic procedures are PROC ANOVA and PROC GLM, for
General Linear Model.  PROC ANOVA should be used only with balanced designs.
PROC GLM may be used with either balanced or unbalanced designs.  PROC GLM and
PROC ANOVA both have the same syntax and will give identical results when the design
is orthogonal.  However, when the design is nonorthogonal, the PROC ANOVA usually
will give incorrect results.  Hence, to avoid errors it is recommended that one use PROC
GLM and only PROC GLM.

The syntax for PROC GLM is

    

PROC GLM DATA =<data set name >  ORDER =

data

formatted

internal

freq

 

 
 

 
 

 

 
 

 
 

Althugh the ORDER= option is not necessary, it is highly recommended that it be used in
order to avoid errors.  It specifies which level of the ANOVA factor is level number 1,
which is level 2, etc.  To see how this option operates, consider the following SAS
program that will be used as input to an ANOVA where sex is the ANOVA factor..

PROC FORMAT;
FORMAT sexfmt 1=‘Male’ 2=‘Female’;

DATA bagels;
INPUT name sex bagels;
LABEL bagels = ‘Number of bagels consumed in five minutes’:
FORMAT sex sexfmt.;

CARDS:
Waldo 1 6
Esteretta 2 2
Orestes 1 17
Beulah 2 3
Wilburina 2 1
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;

If ORDER = data is used in the PROG GLM statement then level number 1 is the
first level encountered in the data set.  The first observation is Waldo, a male, so males
will be the first level and females the second level for the ANOVA factor sex.

If ORDER = formatted is used then SAS uses the alphabetical order of the
formatted variable used in the analysis.  The variable sex is associated with the format
sexfmt, so instead of printing a “1” SAS will print “Male” and instead of “2” SAS will
print “Female.”  Because F precedes M in the alphabet, females will be the first level and
males will be the second level of the ANOVA factor sex.

If ORDER = internal then SAS does not use the formatted labels.  Instead, it
orders by the numeric values of the variable.  The ordering for sex in this case is 1 and
then 2, so males will be the first level and females the second level.

If ORDER = freq then SAS will order the levels in terms of decreasing frequency
in the data.  Because there are three females and two males, the first level of sex will be
female and the second will be male.

The following statements appear after the PROC GLM statement:

CLASS <names of the variables to be used as ANOVA factors in the model> ;
MODEL <dependent variable(s)> = <independent variable(s)> ;

In the bagel data set, for example, the commands could read

PROC GLM DATA=bagels ORDER=formatted;
CLASS sex;
MODEL bagels = sex;

RUN;

In the Kurlu data set, the following commands could be used

PROC GLM DATA=kurlu ORDER=data;
CLASS group;
MODEL si_pre sf_pre oi_pre = group;

RUN;

This statement would perform three different ANOVA, one for each of the three variables
in the dependent variable list.

In factorial designs, interactions are designated by placing a star (*) between the
variables in the interaction.  If an interaction term is not explicitly states, then SAS will
ignore that interaction.  For example, if the previous treatment variable for the Kurlu
problem was called pretreat, then the following statement will only fit the main effects for
therapy group and for prior treatment:

CLASS group pretreat;
MODEL si_pre si_post = group pretreat;
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The following statements would also fit the interaction term:

CLASS group pretreat;
MODEL si_pre si_post = group pretreat group*pretreat;

A vertical bar (|) is a shortcut for specifying “all the interactions” between the variables
that surround the bar.  For example,

CLASS sex age religion;
MODEL attitude = sex | age | religion;

would fit the three main effects for sex, age, and religion, the three different two-way
interactons (sex*age, sex*religion, and age*religion), and the three way interaction of
sex*age*religion.  On the other hand, the following statements

CLASS sex age religion;
MODEL attitude = sex | age religion;

would fit the three main effects but only the interaction between sex and age.
To place a covariate into the analysis, simply enter it into the list of independent

variables on the MODEL statement.  For example,

CLASS group;
MODEL si_pre = group age;

will treat age as a covariate in the Kurlu example.
The MEANS statement for PROC GLM prints out the group means and standard

deviations for one or more ANOVA effects.  The syntax is

MEANS <list of ANOVA effects>;

For example the statement

MEANS sex religion sex*religion;

would print out three tables.  The first would give the means for sex, the second would
give the means for religion, and the third would give the means for all combinations of sex
and religion.

Sums of Squares in ANOVA
In an orthogonal or balanced ANOVA in which there are equal numbers of

observations in each cell of the ANOVA design, there is no need to worry about the
decomposition of sums of squares.  Here, one ANOVA factor is completely uncorrelated
with another ANOVA factor, so a test for, say, a sex effect is independent of a test for,
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say, an age effect.  Completely balanced designs like this are usually obtainable in
preplanned experiments.

When the design is unbalanced or nonorthogonal (i.e., the number of observations
vary from one cell to another), then there is not a unique decomposition of the sums of
squares.  Here, the effects for one ANOVA factor may be correlated with those for
another ANOVA factor.  Hence, decisions must be made to account for the correlation
between the ANOVA factors in terms of quantifying the effects of any single factor.  The
situation is mathematically equivalent to a multiple regression model where there are
correlations among the predictor variables.  Each variable has direct and indirect effects on
the dependent variable.  In an ANOVA, each ANOVA factor will have direct and indirect
effects on the dependent variable.

SAS can print out four different types of sums of squares.  In an orthogonal
design, all four will be equal.  In a nonorthogonal design, the “correct” sums of squares
will depend upon the logic of the design.  To illustrate these four sums of squares,
consider the following statement:

PROC GLM DATA=attitudes ORDER=internal;
CLASS sex religion;
MODEL attitude = sex | religion;

RUN;

The first sums of squares are called Type I sums of squares by SAS.  This performs an
hierarchical decomposition.  That is, the sum of squares for sex is calculated first, then the
sum of squares for religion, controlling for sex, is calculated next, and finally, the sum of
squares for the interaction of sex and religion is calculated, controlling for the main effect
of sex and then the main effect of religion given sex.

The second sums of squares are called Type II sums of squares and is equal to the
sums of squares from a multiple regression of the dependent variable on the quantified
equivalent of the variables sex, religion, and the sex *religion interaction.  The sum of
squares for sex controls for religion and the sex*religion interaction, the sum of squares for
religion controls for sex and the sex*religion interaction, and the sum of squares for
sex*religion controls for sex and for religion.

The third sums squares are called Type III sums of squares.  The decomposition
of the sum of squares for an effect is identical to that of Type II sums of squares.  For
example, the sum of squares for sex is adjusted for the effects of religion and for the
interaction of sex and religion.  However, Type III sums of squares adjusts the sums of
squares to guestimate what they might be if the design were truly orthogonal.  To
illustrate the difference between Type II and Type III SS, consider the factor sex.  If the
data had 60% females and 40% males, then Type II sums of squares simply makes its
estimates based on a sample of 60% females and 40% males.  Type III SS assumes that
the sex difference came about because of sampling and tries to generalize to a population
in which the number of males and females is equal.

The fourth sums of squares, Type IV, is identical to Type III SS, but should be
used whenever there is a missing cell in the ANOVA.  For example, if by dumb luck there
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are no male Episcopalians in the sample, then Type IV SS adjusts the sums of squares for
that fact.

The SAS default provides both Type I and Type III sums of squares.  If you wish
any others, specify the SS2 or SS4 options on the model statement.  For example, the
statement

MODEL  attitude = sex | religion / SS1 SS2 SS3 SS4;

will provide all four types of sums of squares.

A priori and a posteriori tests of means.
The F statistic from an analysis of variance simply tells whether the means for an

ANOVA effect are within random sampling error of one another.  The null hypothesis
states that there is no effect, so the means for the effect should be random samplings of
the same distribution of means (or the same “hat” of means).  The F statistic and its
associated p level give a quantitative index of how likely it is that the means are really
being pulled out of the same sampling distribution or the same “hat.”  If the F value is
large and the associated p value is small, then it is unlikely that the means are within
sampling error of one another.  In other words, it is likely that the means are being pulled
from different “hats” and that there are true differences somewhere among the means.

What the F statistic does not say is where the real differences among the means
exists.  To illustrate this, return to the Kurlu examples.  There are four groups.  The F
statistic for a variable such as social functioning, tells whether the four means on this
variable are within sampling error of one another.  The statistic does not tell us which
means differ from which other means.  Consider the following SAS statements:

LIBNAME p7291dir ‘~carey/p7291dir’;
PROC GLM DATA=p7291dir.kurlu ORDER=internal;

CLASS therapy;
MODEL sf_post = therapy;
MEANS THERAPY;

RUN;

The output from this statement is given in the table below.

KURLU Example
General Linear Models Procedure
Class Level Information

Class    Levels    Values
THERAPY       4    Abreaction Behavioral Cognitive Control

Number of observations in data set = 40

--- <PAGE> --------------------------------------------------
KURLU EXAMPLE
General Linear Models Procedure
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Dependent Variable: SF_POST   Post Social

Source                 DF    Sum of Squares  F Value   Pr > F
Model                   3     1522.27500000     4.51   0.0087
Error                  36     4052.50000000
Corrected Total        39     5574.77500000

                 R-Square              C.V.      SF_POST Mean
                 0.273065          17.02347        62.3250000

Source                 DF         Type I SS  F Value   Pr > F
THERAPY                 3     1522.27500000     4.51   0.0087

Source                 DF       Type III SS  F Value   Pr > F
THERAPY                 3     1522.27500000     4.51   0.0087

--- <PAGE> --------------------------------------------------
KURLU Example
General Linear Models Procedure

Level of          -----------SF_POST-----------
THERAPY       N       Mean              SD

Abreaction   10     68.0000000       11.1455023
Behavioral   10     66.2000000       10.4965603
Cognitive    10     63.0000000        8.3931189
Control      10     52.1000000       12.0595743

It is clear from the ANOVA that there are truely differences among the means.
The F value is 4.51 and its associated p level is less than .01.  Visual examination of the
means suggests that the lowest social functioning group is the control group, and that all
three experimental therapies have higher average levels of social functioning than the
controls.  From this observation, one might conclude that the experimental therapies
appear to differ significantly from the controls.  However, this conclusion--while it may
indeed be true--is not justified from the data.  For example, it could be that the real
difference is between the Abreaction group and the Control group.  How does one test for
this?

Statisticians eschew the approach that most students of statistics might first think
of to solve this problem--performing individual t-tests among all pairs of means.  The
reason is that there would be six different t-tests, so the chance of a Type I error (rejecting
the null hypothesis of no mean difference when in fact, there is no mean difference) is
increased.  There are two approaches that statisticians use.  They are the a priori
approach and the a posteriori (also known as post hoc) approach.

A posteriori or post hoc tests
There are many different a posteriori or post hoc tests, and it is not the province

of this chapter to discuss them all.  What these tests have in common is an attempt to
arrive at a minimum value for the difference between two means that would make the
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means differ significantly according to some adjusted α levels.  In SAS, all of the post hoc
tests are performed using the MEANS statement.  For example, the statement

MEANS therapy / DUNCAN;

will perform Duncan’s multiple range test.  The output from this procedure is given
below.

KURLU Example
General Linear Models Procedure

Duncan's Multiple Range Test for variable: SF_POST

NOTE: This test controls the type I comparisonwise error
      rate, not the experimentwise error rate

Alpha= 0.05  df= 36  MSE= 112.5694

Number of Means     2     3     4
Critical Range   9.62 10.12 10.44

Means with the same letter are not significantly different.

Duncan Grouping               Mean        N  THERAPY

                 A            68.000     10  Abreaction
                 A            66.200     10  Behavioral
                 A            63.000     10  Cognitive
                 B            52.100     10  Control

Here, the rows labeled Number of Means and Critical Range give the difference
between means that would be significant for a comparison of k group means.  For
example, two groups would have to have means differing by 9.62 units to be significantly
different.  For three groups, the mean differences among all three groups would have to be
at least 10.12 units for each of the three group means to be different.  That is, group 1’s
mean is significantly different from group 2’s mean which, in turn, is significantly
different from group 3’s mean when the groups are ordered according to the mean.  The
results of Duncan’s test suggest that the three experimental groups do not differ among
one another.  The Control group, however, differs significantly from all three experimental
groups.

Another popular post hoc test is the Scheffe test.  The SAS statement

MEANS therapy / SCHEFFE LINES;

produces the following output

KURLU Example
General Linear Models Procedure

Scheffe's test for variable: SF_POST
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NOTE: This test controls the type I experimentwise error rate
      but generally has a higher type II error rate than
      REGWF for all pairwise comparisons

Alpha= 0.05  df= 36  MSE= 112.5694
Critical Value of F= 2.86627
Minimum Significant Difference= 13.914

Means with the same letter are not significantly different.

Scheffe Grouping              Mean      N  THERAPY

                A            68.000     10  Abreaction
                A            66.200     10  Behavioral
        B       A            63.000     10  Cognitive
        B                    52.100     10  Control

For this test, two means must differ by 13.914 units to be considered significantly
different.  Again, the three experimental therapies do not differ among one another.
However, in this test, the Cognitive therapy does not differ significantly from the Control
group.  Thus, the Scheffe test gives different substantive results from Duncan’s test.
This situation is not uncommon when a number of different post hoc tests are applied to
the same data.

A priori tests: contrast coding
A priori tests are made before the fact.  That is, before the ANOVA is performed,

the researcher has one or more hypotheses about the group means and then deliberately
codes the data to test this hypothesis.  For example, a natural hypothesis in the Kurlu
example is whether the three experimental therapies on average do better than the control
group.

Contrast coding permits this by literally creating a new independent variable from
the levels of an ANOVA factor.  The general form of a contrast code is

  

New

ANOVA

Independent

Variable(s)

 

 

 
 
 

 

 

 
 
 

=
Matrix

of

Contrast Codes

 

 

 
 

 

 

 
 

Levels of

ANOVA

Independent

Variable

 

 

 
 
 

 

 

 
 
 

The only requirement for the contrast codes is that the coefficients in each row sum to 0.
For example, to test the null hypothesis that the average of the three experimental
therapies does not differ from the control therapy, the contrast code would be
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Experimental vs Control( ) = −1 −1 −1 3( )
Abreaction

Behavioral

Cognitive

Control

 

 

 
 
 

 

 

 
 
 

This statement is mathematically equivalent to testing the null hypothesis

0 = - 1µ(Abreaction) - 1µ(Behavioral) -1µ(Cognitive) + 3µ(Control).

In SAS, the CONTRAST statement is used for contrast coding. The syntax for
the CONTRAST statement is

    CONTRAST  ‘<label for printing>‘  <name of ANOVA effect>  <contrast codes>;

For example, to test whether the control group differs significantly from the mean of the
three experimental therapies, the statement would be

CONTRAST  ‘Control vs. Xpermntl’  therapy  -1 -1 -1 3;

The contrast codes in this example sum to zero so they are legitimate values.  The
codes in the above statement are given in terms of the ORDER= option on the PROC
GLM statement.  Consequently, it is exceptionally important to make certain that
the numbers in the CONTRAST statement agree with the ordering of the levels of
an ANOVA factor.  For this reason, it always good practice to specify the ORDER=
option in the PROC GLM statement.  Because the order of the groups in this example
is alphabetical, the three experimental therapies are first and the control therapy is last.

The following statements illustrate the use of this this with SAS using the Social
Functioning Posttest score as the dependent variable

LIBNAME p7291dir ‘~carey/p7291dir’;
PROC GLM DATA=p7291dir.kurlu ORDER=internal;

CLASS therapy;
MODEL sf_post = therapy;
CONTRAST  ‘Control vs. Xpermntl’  therapy  -1 -1 -1 3;

RUN;

Note that placing the CONTRAST statement before the RUN statement makes this an a
priori contrast.  If one first looked at the ANOVA results and the means and then
developed a contrast hypothesis on the basis of that, then the hypothesis test is no longer
a priori.  Adding this contrast statement to the PROC GLM procedure produces the
following output.

KURLU EXAMPLE
General Linear Models Procedure
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Dependent Variable: SF_POST   Post Social

Source                 DF    Sum of Squares  F Value   Pr > F
Model                   3     1522.27500000     4.51   0.0087
Error                  36     4052.50000000
Corrected Total        39     5574.77500000

                 R-Square              C.V.      SF_POST Mean
                 0.273065          17.02347        62.3250000

Source                 DF         Type I SS  F Value   Pr > F
THERAPY                 3     1522.27500000     4.51   0.0087

Source                 DF       Type III SS  F Value   Pr > F
THERAPY                 3     1522.27500000     4.51   0.0087

Contrast               DF       Contrast SS  F Value   Pr > F
Control vs Xpermntl     1     1394.00833333    12.38   0.0012

The chief advantage of the contrast hypothesis test as opposed to the simple F
test from the ANOVA is that it is a more powerful test of the hypothesis that the
experimental therapies work.  In the contrast hypothesis, there is a single degree of
freedom while in the ANOVA there are three degrees of freedom for the F ratio.  This
increase in power is apparent from the lower p level for the contrast.

To illustrate how the CONTRAST statement is equivalent to creating a new
variable, try running the following SAS program and compare its output to the one given
above.

LIBNAME p7291dir ‘~carey/p7291dir’;
DATA temp;

SET p7291dir.kurlu;
IF therapy=‘Control’ THEN convsxpr = 3;
ELSE convsxpr=-1;
LABEL convsxpr=‘Control vs Xpermntl’;

RUN;
PROC GLM DATA=temp;

MODEL sf_post = convsxpr;
RUN;

More detail about contrast coding is provided in the Appendix which will become
available whenever I get enough time to write the damn thing.

Polynomial Contrast Codes
One strongly recommended use of contrast codes is for ANOVA factors where

the levels of the factor are ordered according to some scale of magnitude.  To illustrate
this, consider a new data set (on ~carey/p7291dir/political.attitudes.sas) on political
attitudes.  The dependent variables in the study are all measures of liberalism versus
conservativism where high scores are associated with more liberal attitudes.  The first
dependent variable measures attitudes towards abortion, the second dependent variable
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measures attitudes toward affirmative action, and the third dependent variable measures
attitudes toward health care reform.

There are two independent variables in the study.  The first is gender of the
respondent (female or male), and the second is education.  Education is divided into three
levels--some high school, high school graduate, and college graduate--and individuals are
placed into the highest category achieved.  The design is shown below.

Design of the Political Attitudes Study

Education:
Sex: < high school grad high school grad college grad
Male
Female

This is a straight-forward, twoway ANOVA with sex as one factor and education
as the other factor.  Sex has two levels and education has three levels, so the design could
be called a 2 by 3 ANOVA.  The usual SAS statements to analyze the data would be

PROC GLM ORDER=internal;
CLASS sex educ;
MODEL att1 att2 att3 = sex | educ;

RUN;

However, education is an ordered variable.  Group 2 (high school grads) has more formal
education than group 1 and group 3 (college grads) has more formal education than group
2.  If attitudes are associated with education, one can arrive at a more powerful test by
contrast coding education into a linear effect and a quadratic effect.  This is called a
polynomial contrast code.  The GLM statements would read:

PROC GLM ORDER=internal;
CLASS sex educ;
MODEL att1 att2 att3 = sex | educ;
CONTRAST  ‘educ: linear’  educ -1 0 1;
CONTRAST  ‘educ: quadratic’ educ -1 2 -1;

RUN;

In the ordinary ANOVA, there would be two degrees of freedom associated with
education.  The contrast, however, splits these into two tests, each with a single degree of
freedom.  The first test, the linear contrast, tests whether attitudes change linearly with
education.  Because education has three levels, this test is equivalent to testing whether
the mean of college grads differs from that of high school dropouts.  The second test, the
quadratic, literally tests whether the mean for the middle group of high school grads
differs significantly from the average of the means for high school dropouts and college
grads.  The results of these tests for two variables, att2 and att3, are given below.



© Gregory Carey, 1998 MANOVA II  - 14

Political Attitudes: sex & education
General Linear Models Procedure

Dependent Variable: ATT2   Affirmative Action

Source                 DF    Sum of Squares  F Value   Pr > F
Model                   5     1085.14166667     3.25   0.0088
Error                 114     7613.65000000
Corrected Total       119     8698.79166667

                 R-Square              C.V.         ATT2 Mean
                 0.124746          20.97701        38.9583333

Source                 DF         Type I SS  F Value   Pr > F

SEX                     1        7.00833333     0.10   0.7466
EDUC                    2      992.11666667     7.43   0.0009
SEX*EDUC                2       86.01666667     0.64   0.5271

Source                 DF       Type III SS  F Value   Pr > F

SEX                     1        7.00833333     0.10   0.7466
EDUC                    2      992.11666667     7.43   0.0009
SEX*EDUC                2       86.01666667     0.64   0.5271

Contrast               DF       Contrast SS  F Value   Pr > F

Educ: linear            1      644.11250000     9.64   0.0024
Educ: quadratic         1      348.00416667     5.21   0.0243

The significance of the linear contrast suggests that the means for college grads
differ from those of high school dropouts on attitudes towards affirmative action.  The
significance of the quadratic contrast suggests that the means for high school grads does
not lie midway between the means for the high school dropouts and the college grads.  As
in any ANOVA, the means must be inspected to tell us in which direction these
differences fall.  The graph below depicts the means for males and females on attitudes
toward affirmative action as a function of education.
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Conclusion here would be that education is associated with more liberal attitudes
toward affirmative action.  But this is apparent only for college graduates.  High school
graduates have the same level of attitudes as high school dropouts.

The results for the variable att3 (attitudes toward health care) are given below.

Political Attitudes: sex & education
General Linear Models Procedure

Dependent Variable: ATT3   Health Care

Source                 DF    Sum of Squares  F Value   Pr > F

Model                   5      222.27500000     1.34   0.2518
Error                 114     3777.05000000
Corrected Total       119     3999.32500000

                 R-Square              C.V.         ATT3 Mean
                 0.055578          20.24993        28.4250000

Source                 DF         Type I SS  F Value   Pr > F

SEX                     1       37.40833333     1.13   0.2902
EDUC                    2      171.80000000     2.59   0.0792
SEX*EDUC                2       13.06666667     0.20   0.8213

Source                 DF       Type III SS  F Value   Pr > F

SEX                     1       37.40833333     1.13   0.2902
EDUC                    2      171.80000000     2.59   0.0792
SEX*EDUC                2       13.06666667     0.20   0.8213

Contrast               DF       Contrast SS  F Value   Pr > F

Educ: linear            1      156.80000000     4.73   0.0317
Educ: quadratic         1       15.00000000     0.45   0.5024
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Here, the ANOVA results for education suggest that no significant differences, although
the p level does suggest a trend.  The linear contrast, however, is significant while the
quadratic contrast is not.  This suggests that there is indeed an association between
education and health care attitudes, but using a two degrees of freedom test (ANOVA) as
opposed to a single degree of freedom test (linear contrast) hides the relationship.  Again,
the means, given in the following graph, must be inspected to detail in which direction
these differences lie.
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MANOVA: Multivariate Analysis of Variance
Understanding MANOVA requires understanding of sampling, a process outlined

in the handout on sampling and one that deserves some repetition here.  Although we
often speak of sampling “scores” or “numbers” and refer to these scores as being pulled
randomly from a hat, in actuality, we sample observations, not scores.  When running an
experiment one literally has an object (a person, a rat, a tree, etc.) that has a whole list of
attributes.  In univariate ANOVA, we are interested in only one attribute, so we can think
in terms of the quantification of that attribute into a “score.”

In reality, what we are doing is taking an observation and ignoring all those
attributes of the observation except for the single attribute of interest.  That single
attribute is the dependent variable.  MANOVA depends upon the understanding that we
sample an observation, and then ignore all those attributes except for the two or more
attributes of interest.  Those two or more attributes are the dependent variables.  Hence,
instead of loosely talking about a single score, MANOVA loosely talks about a vector of
scores.

To complete the analogy, the ANOVA for a single variable in the Kurlu example
tests whether the scores on that variable for the four groups can be regarded as being
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pulled out of the same “hat” of scores.  A MANOVA for the Kurlu example tells us
whether the vectors of scores for the four variables may be regarded as being pulled out of
the same “hat” of vectors.  Return to the Kurlu example and examine write the GLM
procedure for all three variables after treatment:

LIBNAME here '';
OPTIONS NOCENTER NONUMBER NODATE LINESIZE=64;
TITLE KURLU Example;
PROC GLM DATA=here.kurlu ORDER=internal;

CLASS therapy;
MODEL si_post sf_post oi_post = therapy;
CONTRAST 'Contrl vs Xpermntl' therapy -1 -1 -1 3;
MANOVA H=therapy / PRINTE;

RUN;

The output from these statements is given below.

KURLU Example
General Linear Models Procedure
Class Level Information

Class    Levels    Values
THERAPY       4    Abreaction Behavioral Cognitive Control

Number of observations in data set = 40
--- <PAGE> --------------------------------------------------
KURLU Example
General Linear Models Procedure

Dependent Variable: SI_POST   Post Symptoms
Source                 DF    Sum of Squares  F Value   Pr > F

Model                   3      297.27500000     1.07   0.3743
Error                  36     3336.50000000
Corrected Total        39     3633.77500000

                 R-Square              C.V.      SI_POST Mean
                 0.081809          16.43547        58.5750000

Source                 DF         Type I SS  F Value   Pr > F
THERAPY                 3      297.27500000     1.07   0.3743

Source                 DF       Type III SS  F Value   Pr > F
THERAPY                 3      297.27500000     1.07   0.3743

Contrast               DF       Contrast SS  F Value   Pr > F
Contrl vs Xpermntl      1      279.07500000     3.01   0.0912
--- <PAGE> --------------------------------------------------
KURLU Example
General Linear Models Procedure

Dependent Variable: SF_POST   Post Social

Source                 DF    Sum of Squares  F Value   Pr > F
Model                   3     1522.27500000     4.51   0.0087
Error                  36     4052.50000000



© Gregory Carey, 1998 MANOVA II  - 18

Corrected Total        39     5574.77500000

                 R-Square              C.V.      SF_POST Mean
                 0.273065          17.02347        62.3250000

Source                 DF         Type I SS  F Value   Pr > F
THERAPY                 3     1522.27500000     4.51   0.0087

Source                 DF       Type III SS  F Value   Pr > F
THERAPY                 3     1522.27500000     4.51   0.0087

Contrast               DF       Contrast SS  F Value   Pr > F
Contrl vs Xpermntl      1     1394.00833333    12.38   0.0012
--- <PAGE> --------------------------------------------------
KURLU Example
General Linear Models Procedure

Dependent Variable: OI_POST   Post Occup

Source                 DF    Sum of Squares  F Value   Pr > F
Model                   3      225.07500000     0.65   0.5896
Error                  36     4170.70000000
Corrected Total        39     4395.77500000

                 R-Square              C.V.      OI_POST Mean
                 0.051203          19.28078        55.8250000

Source                 DF         Type I SS  F Value   Pr > F
THERAPY                 3      225.07500000     0.65   0.5896

Source                 DF       Type III SS  F Value   Pr > F
THERAPY                 3      225.07500000     0.65   0.5896

Contrast               DF       Contrast SS  F Value   Pr > F
Contrl vs Xpermntl      1       99.00833333     0.85   0.3614

E = Error SS&CP Matrix

                SI_POST           SF_POST           OI_POST
SI_POST          3336.5            1607.8            1626.8
SF_POST          1607.8            4052.5            2309.9
OI_POST          1626.8            2309.9            4170.7
--- <PAGE> --------------------------------------------------
KURLU Example
General Linear Models Procedure
Multivariate Analysis of Variance
Partial Correlation Coefficients from the Error SS&CP Matrix / Prob >
|r|

DF = 36      SI_POST   SF_POST   OI_POST
SI_POST     1.000000  0.437245  0.436098
              0.0001    0.0068    0.0070
SF_POST     0.437245  1.000000  0.561859
              0.0068    0.0001    0.0003
OI_POST     0.436098  0.561859  1.000000
              0.0070    0.0003    0.0001
--- <PAGE> --------------------------------------------------
KURLU Example
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General Linear Models Procedure
Multivariate Analysis of Variance

Characteristic Roots and Vectors of: E Inverse * H, where
H = Type III SS&CP Matrix for THERAPY   E = Error SS&CP Matrix

Characteristic   Percent        Characteristic Vector  V'EV=1
     Root
                                       SI_POST        SF_POST
                                       OI_POST
    0.41287135     89.11            0.00206074     0.01755008
                                   -0.00605616
    0.04845571     10.46           -0.01551421     0.00200294
                                    0.01451824
    0.00199145      0.43            0.01231271    -0.00862198
                                    0.01129095

Manova Test Criteria and F Approximations for
the Hypothesis of no Overall THERAPY Effect
H = Type III SS&CP Matrix for THERAPY  E = Error SS&CP Matrix
S=3    M=-0.5    N=16

Statistic              Value       F   Num DF  Den DF  Pr > F
Wilks' Lambda          0.673726  1.6228     9  82.898  0.1221
Pillai's Trace         0.340425  1.5360     9     108  0.1444
Hotelling-Lawley Trace 0.463319  1.6817     9      98  0.1036
Roy's Greatest Root    0.412871  4.9545     3      36  0.0056

NOTE: F Statistic for Roy's Greatest Root is an upper bound.

Characteristic Roots and Vectors of: E Inverse * H, where
H = Contrast SS&CP Matrix for Contrl vs Xpermntl
   E = Error SS&CP Matrix

Characteristic   Percent        Characteristic Vector  V'EV=1
     Root
                                       SI_POST        SF_POST
                                       OI_POST
    0.39778216    100.00            0.00296313     0.01744071
                                   -0.00703242
    0.00000000      0.00           -0.00431561    -0.00287712
                                    0.01804125
    0.00000000      0.00            0.01921291    -0.00859648
                                    0.00000000
--- <PAGE> --------------------------------------------------
KURLU Example
General Linear Models Procedure
Multivariate Analysis of Variance

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no Overall Contrl vs Xpermntl Effect
H = Contrast SS&CP Matrix for Contrl vs Xpermntl
   E = Error SS&CP Matrix
S=1    M=0.5    N=16

Statistic              Value      F    Num DF  Den DF  Pr > F

Wilks' Lambda          0.715419   4.5082    3      34  0.0091
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Pillai's Trace         0.284581   4.5082    3      34  0.0091
Hotelling-Lawley Trace 0.397782   4.5082    3      34  0.0091
Roy's Greatest Root    0.397782   4.5082    3      34  0.0091
--- <PAGE> --------------------------------------------------

The SAS output gives the univariate ANOVA for each of the dependent variables
specified in the MODEL statement.  Because a CONTRAST statement was given, SAS
will also test the contrast of the control therapy versus the mean of the three experimental
therapies for each of the dependent variables.  Notice how the p level for the contrast
statement is lower than that for the ANOVA for each of the three therapies.  Examination
of each ANOVA gives an equivocal test of the therapies.  There is no evidence for
therapeutic differences for two of the variables, Symptom Index and Occupational
Adjustment while there is favorable evidence for some differences in Social Functioning.
Could it be that the result for Social Functioning is a false positive?  Or perhaps, one or
both of the results for the Symptom Index and Occupational Adjustment are false
negatives?  A MANOVA can help to answer that question.

The MANOVA statement performs the multivariate analysis of variance.  The
H=  subcommand specifies the ANOVA factor to test.  Because this is a one-way
ANOVA, there is only one ANOVA factor, therapy.  The option PRINTE requests that
the procedure print out the sums of squares and cross products (SS&CP) matrix for error
and its associated correlation matrix.

The first output from MANOVA is the SS&CP matrix for the error term.
Because this matrix is unscaled, there is no need to visually inspect it.  The correlation
matrix is more informative.  It is called a “partial” correlation matrix because it controls
for mean differences among the therapies.  As in multivariate regression, if the
independent variables predicted so much of the dependent variables that the remainder is,
in fact, random error, then all correlation should be close to 0.0.  The fact that these
correlations deviate from 0 inform us that, within a group, individuals with high scores on
the symptom index also tend to have high scores on social functioning, etc.

The next section of the output gives the eigenvalues (termed characteristic roots in
the output) and eigenvectors (characteristic vectors) of the product of the inverse of the
error SSCP matrix and the hypothesis SSCP matrix, or E-1H.  All the hypotheses tests for
MANOVA are made on this matrix, so apparently some SAS programmer felt an
overwhelming compulsion to print it out.  For most people this part of the output is as
interesting as a random collection of social security numbers.

The following section gives the results of the hypothesis test.  There are four
different test statistics, each with its own associated F statistic.  In some designs, these
four will give identical results.  But in most cases--the present example being one--they
will differ.  Of the four, Pillai’s trace is the most robust (i.e., least sensitive to departures
from the assumptions).  Wilk’s Lambda (λ), however, is more often reported because the
quantity 1 - λ gives the proportion of generalized variance in the dependent variables
explained by the model.  The two other test statistics--Hotelling-Lawley’s trace and
Roy’s Greatest Root--are seldom used.  Usually, Pillai’s trace, Wilks’ λ, and Hotelling-
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Lawley trace give similar results.  Roy’s root is an upper bound limit to the F statistic, so
it may give a very different F and p-value than the other three statistics.  When this
occurs, it is prudent to ignore Roy’s statistic.

All of the statistics try to answer the following question:  How likely is it that the
3 by 1 column vector of means for the four groups are being sampled from the same “hat”
of 3 by 1 column vectors?  To rephrase the question, are there differences in the 3 by 1
column vectors of means somewhere among these four groups?  The F statistics and their
associated p-values suggest a weak trend in this direction.

When a CONTRAST statement is given before the MANOVA statement, the
MANOVA automatically tests the contrast.  In this case, the contrast would test whether
the 3 by 1 vector of means for the Control group differs significantly from the 3 by 1
vector of means averaged over the experimental therapies.  All four test statistics give the
same answer to this hypothesis.  Because the Fs are significant, it is highly likely that the
means for the experimental treatments differ, on average, from the means for the Control
group.  Once again, we can see the advantage of using contrast coding for testing
hypotheses.

Transformations
Considerable time has been spent discussing contrast coding in ANOVA because

the major utility of MANOVA lies in an analogous coding scheme.  Contrast coding is
used to test hypotheses about independent variables or the variables on the right hand
side of the ANOVA model.  A major use of MANOVA is to do analogous contrasting to
dependent variables or the variables on the left hand side of the ANOVA model.  To
avoid equivocation in the use of the word contrast, the term transformation will be used
to denote coding of the dependent variables to test hypotheses about the variables.

A contrast of an independent variable literally creates a new independent variable
and then analyzes the dependent variable(s) using this new independent variable.  A
transformation of dependent variables literally creates a new dependent variable and then
analyzes the new dependent variable.  The general form of a transformation is
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To illustrate, return to the Kurlu example.  Thus far, we have only analyzed the
three variables measured after therapy.  This was done for didactic reasons.  A preferable
type of analysis would be to control for baseline scores and then test for different
outcomes on the post-test scores.  For the Symptom Index, one possible approach is to
create a new variable that subtracts the baseline from the post-test score.  The following
code illustrates this:
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TITLE KURLU Example;
DATA temp;

SET here.kurlu;
si_diff = si_post - si_pre;

RUN;
PROC GLM DATA=temp ORDER=internal;

CLASS therapy;
MODEL si_diff = therapy;
CONTRAST 'Control vs Exprmntl' therapy -1 -1 -1 3;

RUN;

Here, the analysis is for the new variable si_diff.  The output for this example is:

---<PAGE>----------------------------------------------------
KURLU Example
General Linear Models Procedure
Class Level Information

Class    Levels    Values
THERAPY       4    Abreaction Behavioral Cognitive Control

Number of observations in data set = 40
---<PAGE>----------------------------------------------------
KURLU Example
General Linear Models Procedure

Dependent Variable: SI_DIFF

Source                 DF    Sum of Squares  F Value   Pr > F
Model                   3      481.40000000     2.27   0.0970
Error                  36     2545.00000000
Corrected Total        39     3026.40000000

                 R-Square              C.V.      SI_DIFF Mean
                 0.159067          102.5366        8.20000000

Source                 DF         Type I SS  F Value   Pr > F
THERAPY                 3      481.40000000     2.27   0.0970

Source                 DF       Type III SS  F Value   Pr > F
THERAPY                 3      481.40000000     2.27   0.0970

Contrast               DF       Contrast SS  F Value   Pr > F
Control vs Exprmntl     1      388.80000000     5.50   0.0247
---<PAGE>----------------------------------------------------

Compare this output with that for the variable si_post given in previous output.
Notice how the p-value becomes smaller.  The reason for this is that difference scores
have a smaller variance that the original scores when the two original scores are positively
correlated.  This reduces the error variance which is the denominator in the F ratio.  A
smaller denominator increases the value of F.  Hence, there is almost always increased
power to detect effects by controlling for baseline measurements.  Once again, we see the
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advantage of using contrast codes to test for the efficacy of the three experimental
therapies.

The C ONTRAST statement in PROC GLM saves the trouble of creating new
independent variables in a DATA step.  Likewise the M= option on the MANOVA
statement saves the trouble of creating new dependent variables.  The M= option,
however, has a different syntax.  Here one does not have to enter numbers for
transformation codes (although one can do so, if desired).  Instead one can simply express
the algebraic equivalent using the original dependent variable names.  For example, the
following MANOVA performs the same analysis as the one that created a new variable,
si_diff, above:

PROC GLM DATA=here.kurlu ORDER=internal;
CLASS therapy;
MODEL si_pre si_post = therapy;
CONTRAST 'Control vs Xpermntl' therapy -1 -1 -1 3;
TITLE2 MANOVA for difference scores;
MANOVA H=therapy M=si_post - si_pre;

RUN;

Here, the M= option on the MANOVA statement gives the transformation of the
dependent variables.  In this case, the MANOVA will be performed on a “new variable”
that equals the difference between post-test and pretest scores on the Symptom Index.
The relevant output from this transformation is given below.
---<PAGE>----------------------------------------------------
KURLU Example
MANOVA for difference scores

General Linear Models Procedure
Multivariate Analysis of Variance

M Matrix Describing Transformed Variables

                 SI_PRE           SI_POST
MVAR1                -1                 1
---<PAGE>----------------------------------------------------
KURLU Example
MANOVA for difference scores

General Linear Models Procedure
Multivariate Analysis of Variance

Characteristic Roots and Vectors of: E Inverse * H, where
H = Type III SS&CP Matrix for THERAPY   E = Error SS&CP Matrix

Variables have been transformed by the M Matrix

Characteristic   Percent        Characteristic Vector  V'EV=1
     Root
                                         MVAR1
    0.18915521    100.00            0.01982239

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no Overall THERAPY Effect
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on the variables defined by the M Matrix Transformation
H = Type III SS&CP Matrix for THERAPY   E = Error SS&CP Matrix

S=1    M=0.5    N=17
Statistic             Value        F   Num DF  Den DF  Pr > F

Wilks' Lambda          0.840933   2.2699    3      36  0.0970
Pillai's Trace         0.159067   2.2699    3      36  0.0970
Hotelling-Lawley Trace 0.189155   2.2699    3      36  0.0970
Roy's Greatest Root    0.189155   2.2699    3      36  0.0970

---<Section of output deleted> ------------------------------

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no Overall Control vs Xpermntl Effect
on the variables defined by the M Matrix Transformation
H = Contrast SS&CP Matrix for Control vs Xpermntl
   E = Error SS&CP Matrix

S=1    M=-0.5    N=17

Statistic             Value        F   Num DF  Den DF  Pr > F

Wilks' Lambda          0.867476   5.4997    1      36  0.0247
Pillai's Trace         0.132524   5.4997    1      36  0.0247
Hotelling-Lawley Trace 0.15277    5.4997    1      36  0.0247
Roy's Greatest Root    0.15277    5.4997    1      36  0.0247
---<PAGE>----------------------------------------------------

The first MANOVA tests for the independent variable therapy.  Notice how the F-value
here equals that for the simple ANOVA on the difference score given in the previous
output.  The second MANOVA is the for contrast effect.  Once again, the F-value is
identical to that in the ANOVA for the contrast effect.  The reason for this is obvious--
the MANOVA transformation is creating one and only one new variable, the difference
between post-test and pre-test scores.  Hence, the MANOVA is operating on a 1 by 1
SSCP matrix, which is the definition of an ANOVA.

Profile Analysis
The full value of transformations comes about when one performs several

transformations to illuminate the patterning of responses on the dependent variables as a
function of the independent variables.  One type of transformation is a polynomial
transformation.  This is useful when the dependent variables represent
measurements over time.  We will treat this in detail in discussion of repeated measures
ANOVA in the next chapter.  A second important transformation is often called a
profile transformation that gives rise to a profile analysis.

For a profile analysis of many psychological variables where the measurement
metric is arbitrary, it is recommended that the dependent variables all be measured on the
same scale of measurement.  Usually, the most important requirement is that the
dependent variables have the same standard deviations, but making their means be the
same can aid in interpretation.  If they are not measured on the same scale, then PROC
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STANDARD may be used to place them on a common metric.  To illustrate a profile,
consider the following SAS code:

TITLE KURLU Example;
TITLE2 Profile Analysis of Difference Scores;
DATA temp;

SET here.kurlu;
si_diff = si_post - si_pre;
sf_diff = sf_post - sf_pre;
TITLE KURLU Example;

RUN;
PROC SORT; BY THERAPY;
PROC MEANS;

BY THERAPY;
VAR si_diff sf_diff oi_diff;

RUN;

The means of the three difference scores that come from this output may then be plotted
on a graph such as that given below.
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There are two attributes to a profile.  The first is overall elevation or level.
Mathematically, this is equal to either the sum or the average of the dependent variables.
For the Kurlu data, the profile level for a therapy would be a measure of overall, global
improvement.

The second attribute of a profile is its shape.  Profile shape equals the “hills and
valleys” in a plot of the means.  Mathematically, profile shape is equal to a series of
difference scores.  The first difference score is that between the first and second
dependent variable, the second is that between the second and third dependent variable,
and so on.  For the Kurlu data, the profile shape of a therapy is a measure of differential
improvement on one outcome measure versus another outcome measure.  A test of profile
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shape asks whether the four lines in the figure are really parallel to one another except for
sampling error.  If this test is rejected, then the lines are not parallel.

A profile analysis involves performing two MANOVAs.  The first MANOVA
transforms the dependent variables into a new variable, level.  The second MANOVA
transforms them into the new shape variables.  As applied to the Kurlu data, the SAS
code would be

TITLE KURLU Example;
TITLE2 Profile Analysis of Difference Scores;
DATA temp;

SET here.kurlu;
si_diff = si_post - si_pre;   /* differnce scores */
sf_diff = sf_post - sf_pre;
oi_diff = oi_post - oi_pre;

RUN;
PROC GLM DATA=temp ORDER=internal;

CLASS therapy;
MODEL si_diff  sf_diff oi_diff = therapy;
CONTRAST 'Control vs Exprmntl' therapy -1 -1 -1 3;
RUN;
TITLE3 Profile Level;
MANOVA H=therapy  M=si_diff + sf_diff + oi_diff /

  PRINTE;
RUN;
TITLE3 Profile Shape;
MANOVA H=therapy

 M=si_diff - sf_diff,
   sf_diff - oi_diff

             MNAMES = diff1 diff2 /
             PRINTE SUMMARY;
RUN;

Some comment is needed here before examining the output.  As in the previous examples,
there is a contrast between the mean of the three experimental therapies and that of the
Control group.  In the profile level, the new dependent variable is the sum of the three
dependent variables.  This gives identical results to those using the average of the three
variables in the following MANOVA statement:

MANOVA H=therapy
       M=.333*si_diff + .333*sf_diff + .333*oi_diff;

The analysis of profile shape creates two new dependent variables.  The
MANOVA is then performed on these two new variables.  The first new variable is the
difference between improvement on the Symptom Index and improvement on the Social
Functioning measure.  The second new dependent variable is difference between the Social
Functioning measure and the Occupational Adjustment measure.  In the M= option of the
MANOVA statement, a comma (,) is used to separate one new variable from the next.  In
general, if there are q dependent variables, then there will be (q - 1) new dependent
variables for a profile shape.
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The MNAMES = option gives names to the two new dependent variables.  By
default, SAS would name them mvar1 and mvar2, but in this code, they have been called
diff1 and diff2.  The SUMMARY option requests that SAS print individuals ANOVAs
for the new variables diff1 and diff2.  (Do not forget the slash (/) before the SUMMARY
option.)  The output from this SAS program is given below.

---<Page>----------------------------------------------------
KURLU Example
Profile Analysis of Difference Scores
General Linear Models Procedure
Class Level Information

Class    Levels    Values
THERAPY       4    Abreaction Behavioral Cognitive Control

Number of observations in data set = 40

---<Page>----------------------------------------------------
KURLU Example
Profile Analysis of Difference Scores

General Linear Models Procedure

Dependent Variable: SI_DIFF

Source                 DF    Sum of Squares  F Value   Pr > F

Model                   3      481.40000000     2.27   0.0970
Error                  36     2545.00000000
Corrected Total        39     3026.40000000

                 R-Square              C.V.      SI_DIFF Mean
                 0.159067          102.5366        8.20000000

Source                 DF         Type I SS  F Value   Pr > F
THERAPY                 3      481.40000000     2.27   0.0970

Source                 DF       Type III SS  F Value   Pr > F
THERAPY                 3      481.40000000     2.27   0.0970

Contrast               DF       Contrast SS  F Value   Pr > F
Control vs Exprmntl     1      388.80000000     5.50   0.0247
---<Page>----------------------------------------------------
KURLU Example
Profile Analysis of Difference Scores
General Linear Models Procedure

Dependent Variable: SF_DIFF

Source                 DF    Sum of Squares  F Value   Pr > F

Model                   3     1874.60000000     7.54   0.0005
Error                  36     2983.00000000
Corrected Total        39     4857.60000000

                 R-Square              C.V.      SF_DIFF Mean
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                 0.385911          75.22982        12.1000000

Source                 DF         Type I SS  F Value   Pr > F
THERAPY                 3     1874.60000000     7.54   0.0005

Source                 DF       Type III SS  F Value   Pr > F
THERAPY                 3     1874.60000000     7.54   0.0005

Contrast               DF       Contrast SS  F Value   Pr > F
Control vs Exprmntl     1     1642.80000000    19.83   0.0001
---<Page>----------------------------------------------------
KURLU Example
Profile Analysis of Difference Scores
General Linear Models Procedure

Dependent Variable: OI_DIFF

Source                 DF    Sum of Squares  F Value   Pr > F

Model                   3      293.60000000     1.84   0.1572
Error                  36     1914.00000000
Corrected Total        39     2207.60000000

                 R-Square              C.V.      OI_DIFF Mean
                 0.132995          123.5856        5.90000000

Source                 DF         Type I SS  F Value   Pr > F
THERAPY                 3      293.60000000     1.84   0.1572

Source                 DF       Type III SS  F Value   Pr > F
THERAPY                 3      293.60000000     1.84   0.1572

Contrast               DF       Contrast SS  F Value   Pr > F
Control vs Exprmntl     1       34.13333333     0.64   0.4282
---<Page>----------------------------------------------------
KURLU Example
Profile Analysis of Difference Scores
Profile Level

General Linear Models Procedure
Multivariate Analysis of Variance

M Matrix Describing Transformed Variables

                SI_DIFF           SF_DIFF           OI_DIFF
MVAR1                 1                 1                 1
---<Page>----------------------------------------------------
KURLU Example
Profile Analysis of Difference Scores
Profile Level

General Linear Models Procedure
Multivariate Analysis of Variance

Characteristic Roots and Vectors of: E Inverse * H, where
H = Type III SS&CP Matrix for THERAPY   E = Error SS&CP Matrix

Variables have been transformed by the M Matrix
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Characteristic   Percent        Characteristic Vector  V'EV=1
     Root
                                         MVAR1
    0.36402007    100.00            0.00842947

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no Overall THERAPY Effect
on the variables defined by the M Matrix Transformation
H = Type III SS&CP Matrix for THERAPY   E = Error SS&CP Matrix

S=1    M=0.5    N=17

Statistic              Value       F   Num DF  Den DF  Pr > F

Wilks' Lambda          0.733127   4.3682    3      36  0.0101
Pillai's Trace         0.266873   4.3682    3      36  0.0101
Hotelling-Lawley Trace  0.36402   4.3682    3      36  0.0101
Roy's Greatest Root     0.36402   4.3682    3      36  0.0101

Characteristic Roots and Vectors of: E Inverse * H, where
H = Contrast SS&CP Matrix for Control vs Exprmntl
   E = Error SS&CP Matrix

Variables have been transformed by the M Matrix

Characteristic   Percent        Characteristic Vector  V'EV=1
     Root
                                         MVAR1
    0.31038223    100.00            0.00842947

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no Overall Control vs Exprmntl Effect
on the variables defined by the M Matrix Transformation
H = Contrast SS&CP Matrix for Control vs Exprmntl
   E = Error SS&CP Matrix

S=1    M=-0.5    N=17

Statistic              Value       F   Num DF  Den DF  Pr > F

Wilks' Lambda          0.763136   11.174    1      36  0.0019
Pillai's Trace         0.236864   11.174    1      36  0.0019
Hotelling-Lawley Trace 0.310382   11.174    1      36  0.0019
Roy's Greatest Root    0.310382   11.174    1      36  0.0019
---<Page>----------------------------------------------------
KURLU Example
Profile Analysis of Difference Scores
Profile Shape
General Linear Models Procedure
Multivariate Analysis of Variance

M Matrix Describing Transformed Variables

                SI_DIFF           SF_DIFF           OI_DIFF
DIFF1                 1                -1                 0
DIFF2                 0                 1                -1
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E = Error SS&CP Matrix

                  DIFF1             DIFF2
DIFF1            2694.2           -1752.5
DIFF2           -1752.5            3184.6
---<Page>----------------------------------------------------
KURLU Example
Profile Analysis of Difference Scores
Profile Shape
General Linear Models Procedure
Multivariate Analysis of Variance

Partial Correlation Coefficients from the Error SS&CP Matrix
of the Variables Defined by the Specified Transformation / Prob > |r|

DF = 36        DIFF1     DIFF2

DIFF1       1.000000 -0.598295
              0.0001    0.0001
DIFF2      -0.598295  1.000000
              0.0001    0.0001
---<Page>----------------------------------------------------
KURLU Example
Profile Analysis of Difference Scores
Profile Shape
General Linear Models Procedure
Multivariate Analysis of Variance

Characteristic Roots and Vectors of: E Inverse * H, where
H = Type III SS&CP Matrix for THERAPY   E = Error SS&CP Matrix

Variables have been transformed by the M Matrix

Characteristic   Percent        Characteristic Vector  V'EV=1
     Root
                                         DIFF1          DIFF2
    0.38053896     56.88            0.00345919    -0.01563240
    0.28853867     43.12            0.02379366     0.01564319

Manova Test Criteria and F Approximations for
the Hypothesis of no Overall THERAPY Effect
on the variables defined by the M Matrix Transformation
H = Type III SS&CP Matrix for THERAPY   E = Error SS&CP Matrix

S=2    M=0    N=16.5

Statistic              Value       F   Num DF  Den DF  Pr > F

Wilks' Lambda          0.562152   3.8937    6      70  0.0021
Pillai's Trace         0.499572   3.9954    6      72  0.0017
Hotelling-Lawley Trace 0.669078   3.7914    6      68  0.0026
Roy's Greatest Root    0.380539   4.5665    3      36  0.0082

NOTE: F Statistic for Roy's Greatest Root is an upper bound.
NOTE: F Statistic for Wilks' Lambda is exact.

Characteristic Roots and Vectors of: E Inverse * H, where
H = Contrast SS&CP Matrix for Control vs Exprmntl
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   E = Error SS&CP Matrix

Variables have been transformed by the M Matrix

Characteristic   Percent        Characteristic Vector  V'EV=1
     Root
                                         DIFF1          DIFF2
    0.37957812    100.00            0.00161758    -0.01679005
    0.00000000      0.00            0.02398933     0.01439360

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no Overall Control vs Exprmntl Effect
on the variables defined by the M Matrix Transformation
H = Contrast SS&CP Matrix for Control vs Exprmntl
   E = Error SS&CP Matrix
KURLU Example
Profile Analysis of Difference Scores
Profile Shape

General Linear Models Procedure
Multivariate Analysis of Variance

S=1    M=0    N=16.5

Statistic              Value       F   Num DF  Den DF  Pr > F
Wilks' Lambda          0.724859   6.6426    2      35  0.0036
Pillai's Trace         0.275141   6.6426    2      35  0.0036
Hotelling-Lawley Trace 0.379578   6.6426    2      35  0.0036
Roy's Greatest Root    0.379578   6.6426    2      35  0.0036
---<Page>----------------------------------------------------
KURLU Example
Profile Analysis of Difference Scores
Profile Shape
General Linear Models Procedure
Multivariate Analysis of Variance

Dependent Variable: DIFF1

Source                 DF       Type III SS  F Value   Pr > F
THERAPY                 3      901.40000000     4.01   0.0146
Error                  36     2694.20000000

Contrast               DF       Contrast SS  F Value   Pr > F
Control vs Exprmntl     1      433.20000000     5.79   0.0214

Dependent Variable: DIFF2

Source                 DF       Type III SS  F Value   Pr > F
THERAPY                 3     1205.80000000     4.54   0.0084
Error                  36     3184.60000000

Contrast               DF       Contrast SS  F Value   Pr > F
Control vs Exprmntl     1     1203.33333333    13.60   0.0007
---<Page>----------------------------------------------------

In this example, a new data set was created that contained three new variables
which were the differences between posttest and pretest for the three measures  One
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could look at these three new variables as measures of improvement.  The first set of
MANOVAs is performed on the new dependent variable, level, which is simply the sum
of the three improvement variables.  The first MANOVA (for H=therapy) tells us
whether the means for overall level  four groups can be regarded as being sampled from
the same “hat” of means vectors.  The F-ratio is significant, so it is clear that there are
some differences among the means.

The next MANOVA is for the contrast.  This answers the question of whether
the mean level of improvement averaged across the experimental therapies and mean level
for the Control can both be sampled from the same “hat.”  The F-ratio here is highly
significant, and from examining the means, there would be good justification to conclude
that the experimental therapies, on average, create more improvement than the Control
therapy.

The next set of MANOVA are performed on profile shape.  Here, there are two
new dependent variables.  The first of these is the difference in improvement for the
Symptom Index and the Social Functioning measure.  The second is the difference in
improvement between the Social Functioning measure that the Occupational Adjustment
Scale.  The first MANOVA in this set tests for hypothesis that the profile shape is the
same over the four therapies.  In other words, are the four lines in the figure parallel?  The
F-ratio is highly significant, so this hypothesis must be rejected.  There are indeed, some
line(s) that are not parallel to some other line(s).

The final MANOVA tests for similarity in profile shape between the average
profile of the three experimental therapies and the profile of the Control.  Once again, the
F is significant, so one concludes that the lines are not parallel.

The last section of the output comes from the SUMMARY option on the
MANOVA statement.  This will perform two univariate ANOVAs one for each of the
transformed variables.  The first is for variable Diff1 (difference between Symptom Index
improvement and Social Functioning improvement).  This is significant for both therapy
and for the contrast.  The second is for variable Diff2 (difference between Social
Functioning improvement and Occupational Adjustment improvement). This is likewise
significant for both therapy and the contrast.

A useful exercise would be to run the following program and compare its output
to that given above.

TITLE KURLU Example;
TITLE2 Profile Analysis of Difference Scores;
DATA temp;

SET here.kurlu;
si_diff = si_post - si_pre;   /* differnce scores */
sf_diff = sf_post - sf_pre;
oi_diff = oi_post - oi_pre;
level = si_diff + sf_diff + oi_diff;
diff1 = si_diff - sf_diff;
diff2 = sf_diff - oi_diff;
IF therapy=‘Control’ THEN convsxpr=3;
ELSE convsxpr=-1;
LABEL convsxpr = ‘Control vs Expermntl’;

RUN;
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PROC GLM DATA=temp ORDER=internal;
CLASS therapy;
MODEL level diff1 diff2 = therapy;
MANOVA H=therapy

 M=diff1, diff2;
RUN;
PROC GLM DATA=temp;

MODEL level diff1 diff2 = convsxpr;
MANOVA H=convsxpr

 M=diff1, diff2;
RUN;

A second very good exercise is to go through the following program and then ask
what each of these MANOVA statements are equal to in the output that has already been
presented.  You may also want to run the program to check your answers.

LIBNAME here '~carey/p7291dir';
OPTIONS LINESIZE=64 NODATE NOCENTER NONUMBER;
PROC GLM DATA=here.kurlu ORDER=internal;
  CLASS therapy;
  MODEL si_pre sf_pre oi_pre si_post sf_post oi_post
        = therapy / NOUNI;
  CONTRAST 'Control vs Expermntl' therapy -1 -1 -1 3;
  MANOVA H=therapy
         M=si_pre + sf_pre + oi_pre - si_post - sf_post - oi_post;
  MANOVA H=therapy
         M=si_pre - si_post,
           sf_pre - sf_post,
           oi_pre - oi_post
         MNAMES=si_diff sf_diff oi_diff /
         SUMMARY;
  MANOVA H=therapy
         M=si_pre - sf_pre - si_post + sf_post,
           sf_pre - oi_pre - sf_post + oi_post
         MNAMES=prodiff1 prodiff2 /
         SUMMARY;
  MANOVA h=therapy
         M=si_pre - oi_pre - si_post + oi_post,
           sf_pre - si_pre - sf_post + si_post
         MNAMES=prodifx1 prodifx2 /
         SUMMARY;
RUN;


