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Maximum L.ikelihood

Introduction:

The technique of maximum likelihood (ML) is a method to: (1) estimate the parameters of
a model; and (2) test hypotheses about those parameters. There have been books written on the
topic (a good one is Likelihood by A.W.F. Edwards, New York: Cambridge University Press,
1972), so this handout will serve only as a simple introduction to help understand the process.

There are two essential elements in maximum likelihood. They are (1) a set of data
(which, of course, is necessary for all analyses); (2) a mathematical model that describes the
distribution of the variables in the data set. The model that describes the distribution of the
variables will have certain unknown quantities in it. These are called parameters. The purpose of
maximum likelihood is to find the parameters of the model that best explain the data in the sense of
yielding the largest probability or likelihood of explaining the data. In least squares (see the class
notes chapter on Least Squares Estimation), one finds the parameter of the model that yield the
minimum sum of squared prediction errors. Thus, maximum likelihood differs from least squares
mostly in terms of the criterion for estimating parameters. In least squares, one minimizes the
sum of squared errors; in maximum likelihood, one maximizes the probability of a model fitting
the data. A second difference is that in using maximum likelihood, one must always make some
assumption about the distribution of the data. Sometimes these distributional assumptions are
made in least squares (e.g., MANOVA), but at other times they are not necessary (e.g.,
estimating regression parameters).

Estimation:

It is perhaps easiest to view the estimation part of maximum likelihood by starting with
an example. Suppose that we wanted to estimate the mean and the standard deviation for a single
variable. Let X; denote the score of the variable for the ith observation and let n denote the total
number of observations. Let us further assume that the scores are normally distributed. Then the
likelihood of the ith observation is simply the ordinate of the normal curve for that observation,
or
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Here, Mand S are, respectively, the mean and the standard deviation of the distribution. Because
the observations are all independent (recall the assumption of the independence of the rows of
the data matrix), the likelihood for any two observations is simply the product of their respective
likelihoods. For example, the joint likelihood of the ith and jth observation is simply L(x;))aL(x;).
Again, because of independence, the joint likelihood of any three observations will be the product
of their individual likelihoods. Continuing with this logic, we see that the joint likelihood of the
vector of observations (i.e., the vector x) is

L) = OL(x) @
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Hence, the problem of maximum likelihood is to find Mand S so that L(X) is maximized.

The problem of finding the maximum (or minimum) of a function with respect to the
unknowns is a classic problem in calculus. That is, we want to differentiate the function L(x)
with respect to mand s, then set these first partials to 0, and finally rework the equations so that
we solve for mand s. That is, we want to find mand s such that

L& =0, and L& =0
fm S
The resulting estimates, usually denoted as and , are then known as the maximum likelihood
estimators of mand s.

The process of maximum likelihood is almost always performed on the natural logs of the
likelihood function. That is, in terms of the example, we want to find the mand s that maximize
the log likelihood of the data given the model. The log likelihood is gotten by simply taking the
log of both sides of Equation (2) or

(3)

log(L(x)) = & log(L(X,)) (a)

i1

The log likelihood of X; is simply the log of the right side of Equation (1), or

I09(L(X)) = - 5109(2p) - 3 log(s) - 5 e ©)

Substituting Equation (5) into Equation (4) and reducing gives the log likelihood of the sample as

2
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log(L(x)) = - = log(2p) - Slog(s)- ~A t=-—_
i=1

(6)

The same calculus technique is used with the log likelihoods. That is, we want to find mand s
that satisfy the equations

ToglLO)T _ g gpg  THOOlLOIT _, )
m Ts

There are two reasons for working with log likelihoods rather than with the likelihoods
themselves. First, likelihoods are often (but not always) quantities between 0 and 1. Hence,
taking the products of a large number of fractions can yield extreme rounding and truncation error,
even with the most modern computers. Second, it is considerably easier to calculate the
derivatives of the log likelihood than it is to obtain them for the likelihood because the log
likelihood is a series of sums whereas the likelihood is a series of products. Those with experience
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with calculus will recognize the ease in differentiating sums relative to differentiating a series of
products.

Without going through the mathematics of differentiating Equation 6 with respect to m
and s, setting the partials to 0, and then solving for mand s, we merely state the results.
According to this example, the estimator or mis

n
[¢}

a X
m= =L (8)

n

or the sample mean. Similarly, the estimator of s is

©)

or the sample variance. Note that the maximum likelihood estimator of s is a biased estimate of
the population standard deviation because the divisor is n and not (n - 1). The extent of this bias
becomes smaller as sample size increases.

In this example, it is easy to arrive at analytical expressions for the estimators mand s.
This is actually unusual. Typically, one cannot solve the differential equation, or in many other
cases, the equations can be solved but it would take considerable effort to do so. Here, numerical
methods are used to find the maximum likelihood estimators. There are many different numerical
methods, many of which are geared to a specific class of problems. They are too numerous to
detail them here. Instead, one may look at them as highly sophisticated "trial and error"
procedures. That is, they begin with some initial estimates of the parameters and evaluate the log
likelihood for these estimates. They then find improved estimates based on the log likelihood
surface of the original estimates and continue with this procedure in an iterative fashion until the
log likelihood cannot be maximized any further.
To illustrate how this method works, Example 1 includes the SAS code and the output for
estimating the mean and standard deviation for 50 scores selected from a normal distribution. The
maximum likelihood technique used here is simply called a grid search. That is, it varies the value
of the mean from -.10 to O in increments of .01 and the value of the standard deviation from .95
to 1.0, also in increments of .01. The value of the log likelihood is then plotted for each
combination of the mean and the standard deviation. You can see how the largest value of the log
likelihood (-22.937) occurs with a mean of -.07 and a standard deviation of .96, agreeing with the
analytical estimates.
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Example 1. SAS code and output for performing a grid search for maximum likelihood parameter
estimates.

/o
Example of estimating parameters using maximum likelihood
File of ~carey/p7291dir/maxlik.ex1l.sas
Problem: Given 50 observations what iIs the mean and

what 1s the standard deviation, 1T the distribution
can be assumed to be normal?
See Class notes titled Maximum Likelihood Estimation

title Example of Maximum Likelihood Estimation;
title2 Mean and standard deviation of a normal distribution;
data maxlik;
* generate 50 data random values from a normal distribution;
array x x1-x50;
do over x; X = rannor(91748); end;
* calculate the mean and the standard deviation of the
50 scores;
mean = mean(of x1-x50);
css = css(of x1-x50);
stdl = sqrt(css/49);
std2 = sqrt(css/50);
file print;
put “"The mean is® (mean) (7.3) /
"The corrected sum of squares i1s” (css) (7.3) /
"The standard deviation dividing by (n-1) is*
(stdl) (7-3)
"The standard deviation dividing by n is
(std2) (7.3);

/*
print the headings for the log likelithood values
*/
put // “CGrid of the log likelithoods® /;
put @33 "st. dev. =7;
array logl [6] logll-logl6;
do i=1 to 6; logl[1]=-94+.01*1; end;
put (logll-logl6) (* Mean® 6*10.3) /;
do m=-.1 to 0 by .01;
S=.94;
do 1=1 to 6;
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s=s+.01;
var = s*s;
logl[1]=0;
do over x;
z = (X - m)/s;

loglx = -.5*log(var) -.5*z*z;
logl[i]=logl[1] + loglx;
end;
end;
put (n logll-logl6) (5.2 6*10.3);
end;
run;

Example of Maximum Likelihood Estimation
Mean and standard deviation of a normal distribution

The mean is -0.071

The corrected sum of squares is 46.040

The standard deviation dividing by (n-1) 1s 0.969
The standard deviation dividing by n iIs 0.960

Grid of the log likelihoods
st. dev. =
Mean 0.950 0.960 0.970 0.980 0.990 1.000

-0.10 -22.965 -22.959 -22.964 -22.980 -23.005 -23.040
-0.09 -22.952 -22.946 -22.952 -22.968 -22.993 -23.028
-0.08 -22.944  -22.939 -22.945 -22.961 -22.987 -23.022
-0.07 -22.942 -22.937 -22.943 -22.959 -22.985 -23.020
-0.06 -22.946 -22.941 -22.946 -22.962 -22.988 -23.023
-0.05 -22.955 -22.950 -22.955 -22.971 -22.996 -23.031
-0.04 -22.970 -22.964 -22.969 -22.985 -23.010 -23.045
-0.03 -22.990 -22.984 -22.988 -23.004 -23.029 -23.063
-0.02 -23.015 -23.009 -23.013 -23.028 -23.052 -23.086
-0.01 -23.047 -23.040 -23.043 -23.057 -23.081 -23.114
-0.00 -23.084 -23.076 -23.07/9 -23.092 -23.115 -23.148

In reality the grid search would then be repeated around the area for a mean of -.07 and a standard
deviation of .96 using a smaller increment. This would refine the estimates. This procedure could
then be repeated until the estimates reach a predetermined degree of accuracy.
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Hypothesis Testing:

Tests of hypothesis in ML usually involve a likelihood ratio test. The likelihood ratio test
compares the log likelihoods of two models. The first model is a general model. The second model
is a constrained model. The constrained model must be nested within the general model. That is,
it uses the same parameters as the fixed model but sets some of these parameters to fixed values
according to the hypothesis to be tested. The parameters that are estimated are called free
parameters and those that are set to a predetermined/hypothesized value are called fixed or
constrained parameters. Let Lg denote the log likelihood of the general model with k free
parameters. Let Lc denote the log likelihood of the constrained model with (k - j) free parameters,
J being the number of constrained parameters. Then the likelihood ratio test is simply 2(Lg - L¢)
or twice the difference between the log likelihoods. In large samples, this will be distributed as a
c2 with j degrees of freedom. The degrees of freedom will always equal the number of free
parameters in the general model less the number of free parameters in the constrained model. If
the c? is large and significant, then the hypothesis that generated the constrained model is
rejected.

To illustrate the likelihood ratio test, consider a study of a single, two allele genotype in a
wild population of flowers. The research question is whether the genotypic frequencies are in
Hardy-Weinberg equilibrium or whether some factor such as natural selection or assortative
mating perturb the genotypic frequencies away from the equilibrium values. The observed data
(hypothetical) are given in the right hand side of Table 1.

Table 1. Distribution of genotypes and expected frequencies from a general and constrained
(Hardy-Weinberg) model. p = frequency of allele A; x = conditional probability that the second
allele is A given that the first allele is A.

Predicted Frequency:
Observed
Genotype Number General Constrained
AA 427 pX p
Aa 332 2p(1 - x) 2pq
aa 235 q-p(l-x) 0

Under ordinary circumstances, the test of this hypothesis is not difficult. Let p denote the
frequency of allele Aand g = (1 - p) denote the frequency of allele a. The estimate of p may be
derived from the observed data as the number of AA flowers plus one-half the number of Aa
divided by the total number of flowers or (427 + 332/2)/994 = .597. One could then construct
predicted numbers for the three genotypes from the Hardy-Weinberg equations. For example, the
predicted frequency of AA would be p? times the total number of plants or (.597)?994 = 353.9.
The Pearson c2 would then test whether the genotypic frequencies depart from the Hardy-

Weinberg expectations. The formula for the Pearson c? is
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where O; is the observed number and E; is the predicted number for the ith genotype.

We can now develop a likelihood approach to this problem. First, we wish to develop a
general model. Again, let p and g = (1 - p) denote the frequencies of respectively alleles A and a.
Let x denote the conditional probability that the second allele in a genotype is A given that the
first allele in the genotype is A. The general model can then be written in terms of two free
parameters, p and x. The Hardy-Weinberg model is a constrained model where x = p. (In Hardy-
Weinberg, the probability of a second allele in a genotype given the first allele is simply the
probability of picking that second allele from the population at large.) The expected genotypic
frequencies for the general and constrained models are given in the right-hand side of Table 1.

The probability distribution for this case is very simple. In the general model, if a
genotype is AA then is probability or "likelihood" is px. Furthermore, this is the probability
associated with every AA flower in the sample. Hence, the joint likelihood of all of the AA flowers
is simply (px) raised to the naa power where naa is the number of AA flowers. The log likelihood
for all the AA flowers then becomes naalog(px). If we repeat this for genotypes Aa and aa, we
can come to the formula for the general model as

Le = nuulog( px) +n,,log[2 p(1- x)q] +n,, log[g- p(1- x)] (11)

In the constrained, Hardy-Weinberg model x = p. Hence, the log likelihood for the constrained
model becomes

L = Ny, log(p*) +n,, log(2pa) +n,, log(q®) (12)

A SAS program to estimate the maximum likelihood parameters for both the general and
the constrained models is given in Example 2. The program is somewhat complicated but it
illustrates a more sophisticated method of performing a grid search for two parameters, x and p,
in the general model and one parameter, p, in the constrained model. The output from the
program is given immediately after the SAS code.

Example 2. SAS code and output for maximum likelihood analysis of allele frequencies.

Y
Example of a maximum likelthood analysis
testing for Hardy-Weinberg equilibrium for
genotypes of three flowers
See handout (class notes) on maximum likelithood
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for background.

this program is on ~carey/p7291dir/maxlik.3x2.sas

____________________________________________________ */
title Example of Maximum Likelthood Hypothesis Testing;
title2 Genotypic frequencies for flowers ;
data flowers;

input genol $ geno2 $ geno3 $ nl n2 n3;

cards;
AA Aa aa 427 332 235

data general;
set flowers;
/* -—- arrays --- */
array geno genol-geno3;
array n nl-n3;
array prob probl-prob3;
ntot=nl+n2+n3;
array obs obsl-obs3;
do over obs; obs=n/ntot; end;

/* --— Pearson chi square --- */
p = (n1 + n2/2)/ntot;
gq=1-p;
probl=p*p; prob2=2*p*q; prob3=g*q;
pearchi=0;

do over prob;
con = ((obs - prob)**2)/prob;
pearchi = pearchi + con;

end;

pearchi = ntot*pearchi;

pearprob = 1 - probchi(pearchi,l);

/* _______________________________________ *
* MAXIMUM LIKELIHOOD: two parameter model *
A e e e e e */

file print;

pUL "= "/

- General Model*/
B */;
link Init;

loop2:

do p = plow to phigh by delta;
do x = xlow to xhigh by delta;
link getlogl;
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end;
end;
link deltait;
if delta > 0001 then goto loop2;
link printit;

Ig=maxlogl;

/* _______________________________________ *
* MAXIMUM LIKELIHOOD: one parameter model *
A e e e e e e */

put ///" - ————— "/

" Constrained Model*"/
f e "/;
link init;

loopl:

do p = plow to phigh by delta;
X=p;
link getlogl;
end;
link deltait;
if delta > 0001 then goto loopl;
link printit;
Ic=maxlogl;
Irchi = 2*(lg - 1c);
Irprob = 1 - probchi(lrchi,l);
put / “Likelihood ratio chi square® (Irchi) (7.3)
+3 "Probability”™ (Irprob) (7.4);
put - Pearson chi square® (pearchi) (7.3)
+3 "Probability™ (pearprob) (7.4);
/* stop the program */

stop;
* pnitialization section;
init:
maxlogl=-10**10;
plow=.01;
phigh=.99;
xlow=.01;
xhigh=.99;
delta=.01;
return;
/o
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getlogl:
probl=p*x;
prob2=2*p*(1-x);
prob3=(1-p) - p*(1-x);
logl=0;
do over geno;
if prob le O or prob ge 1 then logl=-10**10;
else logl=logl + n * log(prob);
end;
1T logl > maxlogl then do;
pmax=p;
Xmax=x;
maxlogl=logl;
end;
return;
/] —————-— .
--— change the delta value ---
______________________________ */
deltait:
delta = .1*delta;
plow = pmax - 2*delta;
phigh = pmax + 2*delta;
xlow = xmax - 2*delta;
xhigh= xmax + 2*delta;
return;
/* ——— print out the results --- */
printit:
put "Log likelihood is * (maxlogl) (8.4);
put “Estimate of p is " (pmax) (7.4);
put “Estimate of x is " (xmax) (7.4);
p = pmax; X=Xmax;
link getlogl;
put "“Geno Obs Pre~;
do over prob;
put (geno obs prob) (@3 $2. 2*8.4);
end;
return;
run;

Example of Maximum Likelihood Hypothesis Testing
Genotypic frequencies for flowers



© Gregory Carey, 1998 Maximum Likelihood - 11

General Model

Log likelihood i1s -1063.78
Estimate of p is 0.5980
Estimate of x is 0.7210
Geno Obs Pre

AA 0.4296 0.4312

Aa 0.3340 0.3337

aa 0.2364 0.2352

Log likelihood i1s -1110.54
Estimate of p is 0.5980
Estimate of x iIs 0.5980
Geno Obs Pre

AA 0.4296 0.3576

Aa 0.3340 0.4808

aa 0.2364 0.1616

Likelihood ratio chi square 93.521 Probability 0.0000
Pearson chi square 93.136 Probability 0.0000

Note first the bottom of the output on Example 3. This shows both the likelihood-ratio
c? and the Pearson c? for these same data. Both have one degree of freedom and are highly
significant. Both are also very similar in magnitude. Generally when sample size is large--as it is
in this example--the differences between the two approaches will be trivial. The difference,
however, generally favors the likelihood approach.

The estimate of p is the same in both the general and the constrained model. Such
similarity in parameter estimates across models is very unusual, however. Most often estimates
of the same parameter will differ as one goes from a general to a constrained model. They are the
same here only because of the particular nature of this problem.



