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1. Parametric Statistics: Traditional Approach

1.1 Definition of parametric statistics:

Parametric statistics assume that the variable(s) of interest in the population(s) of
interest can be described by one or more mathematical unknowns.  Some types of
parametric statistics make a stronger assumption—namely, that the variable(s) have a
certain distribution.  To illustrate, consider a simple problem: do male and female US
college students differ in average height?  One type of parametric approach is to assume
that four mathematical quantities can describe height in the population of college
students—the mean for females, the mean for males, the standard deviation for females,
and the standard deviation for males.  A second parametric approach might assume that
height follows a normal distribution in both sexes.

1.2 Key Terms:

1.2.1 Population:

For learning purposes, two types of populations can be distinguished in
parametric statistics.  Officially, statisticians never make this distinction, so the
terminology given below is not standard.  The two types of population are:

1.2.1.1 Specific population:

Specific populations consist of definable individual observations (e.g., people,
rats, cities) where each individual could be identified and enumerate, although it usually
would be impractical to do so.  Examples of specific populations would be: mule deer
living in Rocky Mountains; US college sophomores; American victims of incest.  The
height example would have two specific populations, the population of all US male
college students and the population of all US female college students.

1.2.1.2 Hypothetical population:

Hypothetical populations do not exist, hence the term “hypothetical.” They are
imaginary populations of infinite size and are used whenever parametric statistics assume
that the variables are distributed in a certain form. In the height example, the hypothetical
population of US female students would produce a perfectly smooth histogram whereas
the specific population of US female college students would produce a histogram with
some small irregularities. When statisticians refer to the “population,” they usually speak
about the hypothetical population.

1.2.2 Sample:

A sample is a finite group of observations taken from a specific population.
There are numerous strategies for sampling. Among them are:
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1.2.2.1 Random Sampling.

In a random sample, each observation in the specific population stands the same
equal chance of being selected into the sample.  For obvious reasons, completely random
samples are encountered very seldom in psychology.  In the height example, it would be
necessary to cover many different campuses to obtain a completely random sample.

1.2.2.2 Stratified Random Sampling.

In stratified random sampling, the specific population is divided into two or more
groups (or strata).  Each individual within a strata stands the same, equal chance of being
sampled, but one or more strata are deliberately oversampled.  A classic example would
be a medical study of ethnic differences in hypertension that would sample an equal
number of white Americans and African-Americans.

1.2.2.3 Selected Sampling.

Selected samples occur when predefined criteria are used to sample individuals
from the specific population.  For example, only children with IQ scores less than 70 are
sampled.  Selected samples have the advantage of increasing statistical power (i.e., the
ability to detect effects that are really present) but the disadvantage of limited
generalization.

1.2.2.4 Convenience Sampling.

Convenience sampling occurs when the individuals are not truly representative of
the specific population but are easy to collect.  It is the most frequently encountered
sampling technique in psychology.  Convenience sampling always makes the assumption
that those variables on which the sample is unrepresentative of the specific population
are uncorrelated (or have very low correlations) with those variables that are actually
measured and studied.

For the height example, a convenience sample would be to take a certain number of
University of Colorado men and women.  This strategy makes the reasonable assumption
that attending the University of Colorado, as opposed to other colleges, is not associated
with sex differences in height.  The assumption would be violated if, for example, tall
women would preferentially choose Colorado over other institutions.

1.2.3 Parameter

A parameter is a mathematical unknown in the population, either the specific or
the hypothetical population.  It is customary to denote parameters with Greek letters.
Some frequently encountered parameters are µ (population mean), σ (population standard
deviation), and ρ (population correlation).

The height example could have four parameters: µm and σm (the mean and standard
deviation for male college students) and µf and σf (the respective parameters for females).
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1.2.4 Statistic

There are two types of statistics used in parametric statistics. They are:

1.2.4.1 Descriptive statistics.

A descriptive statistic is an estimate of a population parameter, almost always
obtained through sample data  For example, the sample mean is used to estimate the
population mean.  Usually, Roman letters are used to denote descriptive statistics such as
X  (sample mean), s (sample standard deviation), and r (sample correlation).

In the height example, the estimates of the four parameters might be: X m (the

sample mean for males which is an estimate of µm, the population mean for males), and
s X sm f f, ,and (the three statistics for the other population parameters).

1.2.4.2 Test Statistics.

A test statistic is used to make inferences about one or more descriptive statistics.
Usually, a test statistic does not directly measure a population parameter, although in
some cases it may be mathematically manipulated to do so.  Either Roman or Greek
characters are used for test statistics.  Examples of test statistics would be using a t test
statistic to test whether two sample means differ, using an F test statistic to test whether
two or more sample means differ, and using a χ2 test statistic to test whether two or more
sample proportions differ.  Unfortunately for the beginning statistics student, it is
customary to drop the word “test” from test statistic.  E.g., most textbooks call the t test
statistic the t statistic.

In the height example, one could use the four descriptive statistics
( X s X sm m f f, , ,and ) and the sample sizes to construct a t statistic that could give

information about average height differences between males and females.

1.2.5 Probability density function.

The probability density function  is also referred to as pdf or simply density
function .  The pdf is a mathematical function used to describe two important
phenomena: (1) the distribution of a variable(s) in the hypothetical population; and (2)
the distribution of test statistics.  Mathematically, the pdf fulfills two conditions: (1) it
gives the relative frequency (or probability) of observing a value as a function of that
value; and (2) the area under the curve between two values gives the probability of
randomly selecting a number between those two values.  The unknowns in a pdf are
parameters.

The probability density function most often encountered in behavioral research is
the normal probability density function (i.e., the normal curve).  If f(X) is the probability
of observing a value within a tiny interval of X, then the normal probability density
function of X is
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Here, the quantity π is the constant 3.14 and the term “exp” denotes the
exponential function (i.e., the natural exponent, e, raised to the power of the stuff in the
parentheses).  The two parameters for the normal curve are µ (population mean) and σ
(population standard deviation.  Other important probability density functions are the
Poisson, binomial, multinomial, lognormal, exponential, and Weibull.

Important probability density functions for test statistics are the t pdf (for the t
test statistic), the F pdf (for the F test statistic), and the χ2 pdf (for the χ2 test statistic).
The pdf for a test statistic is called the sampling distribution of the statistic.

1.2.6 Probability distribution function

The probability distribution function is also referred to as the distribution
function , cumulative distribution function, or cdf.  Like the pdf, the cdf is used for both
hypothetical populations and for test statistics. The probability distribution function is
the mathematical integral of the probability density function. (Hence, conversely, the
probability density function is the derivative of the probability distribution function.)
The cdf gives the probability of observing a particular value of X that falls in between two
values, say, X1 and X2.  So, for example, the probability distribution for the normal curve
is
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For example, if X denotes IQ scores which are assumed to be normally distributed
with a mean of 100 and a standard deviation of 15, then the probability distribution
function gives the probability of randomly picking an IQ score that falls somewhere in the
interval between X1 and X2. If X1 = 102 and X2 = 118, then this normal probability
distribution function gives the probability of randomly selecting an IQ score between 102
and 118 or
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Test statistics have their own cdf’s.  Hence, the cdf for a t test statistic gives the
area under the curve for a specific t distribution.

1.2.7 Sampling distribution.

The sampling distribution is the probability density function of a test statistic.
For completely perverted reasons (i.e., to deliberately confuse the beginning graduate
student), statisticians always say “the sampling distribution of the t statistic,” and never
call it what it really is—the probability density function of the t test statistic.

1.2.8 Standard error.

For the same perverted reasons, statisticians refer to the standard deviation of the
probability density function of a test statistic as the standard error of the statistic.
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Putting 1.2.7 together with 1.2.8, statisticians define the standard error as the standard
deviation of the sampling distribution of a statistic.

1.2.9 Mathematical Model

A mathematical model of data consists of one or more mathematical equations that
gives the predicted or expected value for a particular variable of an observation.  For
example, suppose that we assumed that the average height for males was 8 centimeters
(cm) greater than the mean height for females.  Then one could construct a mathematical
model that states the following: “If the observation is a female then the predicted height is
an unknown, say µf.  If the observation is a male, then the predicted height is µf + 8.” The
value for an observation predicted by the mathematical model is called the predicted value
of the observation.

1.2.10 Error or Residual

The terms error and residual are synonymous in statistics.  Error (or a residual) is
the mathematical difference between the actual observed value for an observation and the
observation’s predicted value (i.e., value predicted by a mathematical model).

1.3 Steps in parametric statistics

1.3.1 Estimate the parameter(s)

Given a sample, one or more mathematical formula are used to obtain descriptive
statistics of the parameters and to then test hypotheses about these descriptive statistics.

1.3.1.1 Methods for estimation

There are several different methods that can be used to estimate parameters.  No
single method is “best,” so the choice depends largely on the nature of the problem.  For
the techniques in this course, all the methods often give the same answers or when they
do not, they give very similar answers.

1.3.1.1.1 The Sum of Least Squared Error

The sum of least squared error is most often referred to as simply “least squares.”
Least squares is the most frequently encountered criterion for estimation in the behavioral
sciences, so let’s take some time to explore it in detail.

Least squares begins with the observed value for the first observation in the
sample.  It develops a predicted value for this observation based on a mathematical
model.  The mathematical model is defined as one or more equations based on
population parameters and other aspects of the observed data. Least squares then
subtracts the predicted value from the observed value giving what is called the prediction
error (or more often, error or residual) for the first observation.  It then squares this
prediction error. Usually, the observed value for the first observation is denoted
algebraically as Y1 (the subscript denotes the order of the observation or 1 in this case)
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and the predicted value is denoted by the same symbol with a hat (^) placed over it--     
ˆ Y 1.

The prediction error is usually denoted as e1.  Hence, algebraically, the prediction error for
the first observation is

    
e1 = Y1− ˆ Y 1( )

and the squared error for the first observation is

    
e1

2 = Y1 − ˆ Y 1( )2
.

Least squares then goes to the second observation and computes its error and its
squared error.  Least squares continues with this procedure for all the observations in the
sample.  The final step is to add up all the squared errors giving the sum of squared errors
or SSE.

Algebraically, the following two equations are identical ways of writing SSE:

SSE = e1
2 + e2

2 + ...+ eN
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2

i =1

N

∑
and

SSE = (Y1 − ˆ Y 1)
2 +(Y2 − ˆ Y 2)2 + ... + (YN − ˆ Y N )2 = (Yi − ˆ Y i )

2
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N
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We are now in a position to define the sum of least squared error criterion for
parameter estimation.  Least squares statistics are those estimates of the population
parameters that minimize the sum of squared prediction errors. Mathematically, least
squares statistics are those parameter estimates than generate all the     ̂  Y s so that SSE is
minimized.

To illustrate consider the females in the height example and suppose we would
like to find the least squares statistic for µ f , the mean height for the population of female

college students.
We can write the model by letting the predicted value for height be the mean or

    Yi = ˆ Y i + ei = µ f +e i .

What now is the descriptive statistic that best estimates the parameter µ f  in terms of

minimizing ei
i

N
2

1=
∑ ?  We will eschew all the mathematics that proves the obvious—the best

estimate of µ f  is Y , the mean height in the sample of US college women.

1.3.1.1.2 Maximum Likelihood(*)

Maximum likelihood is another method for estimating parameters.  Maximum
likelihood estimators are those that maximize the probability of observing the data when
the variable(s) in the hypothetical population is(are) assumed to have a certain
probability density function.  For example, if the variable in the hypothetical population
is assumed to follow a normal distribution, then the maximum likelihood estimator of the
population mean, µ, is that numerical value that maximizes the probability of observing
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the sample data. Like least squares, the maximum likelihood estimator of µ is the sample
mean.

1.3.1.1.3 Bayesian Estimation(*)

Baysian estimators are yet another type of estimators.  These estimators assume
that a descriptive statistics is itsself sampled from a hypothetical population of
descriptive statistics that has a certain distribution called the prior distribution. It them
finds the most likely estimator given the data. Like least squares and maximum likelihood,
the Baysian  estimator of µ is the sample mean.

1.3.1.1.4 Robust Estimators(*)

Robust estimators are a whole class of estimators that are relatively insensitive to
departures from the assumptions that go into the mathematical model behind their
estimation.  An example of a robust estimator would be a “trimmed mean” which deletes,
say, the highest three scores and the lowest three scores and then takes the mean of the
remaining data points.  There is no specific criterion(a) developed to determine whether
an estimator is “robust” or not “robust.”

1.3.1.2 Criteria for “Good” Estimators(*)

Not all estimators of a population parameter are “good” estimators.  Statisticians have
established four properties of “good” estimators.  They are:

1.3.1.2.1 Unbiasedness(*)

Technically, an unbiased estimator is one whose expected value equals the
population parameter.  To see what this statement means, examine the sample mean
height for males as an estimator of the population mean height for males.  Suppose that
we were to draw a random sample of N observations from the specific population of
college males,  compute the sample mean, and then enter this sample mean into a data set.
We then gathered another sample of N observations from the specific population,
calculated its sample mean, and add this new sample mean to the data set.  We continue
with this process until we gathered an infinite number of sample means in the data set.  If
the mean of all the sample means equaled the mean in the specific population, then the
sample mean is an unbiased estimator of the population mean.

1.3.1.2.2 Consistency(*)

A consistent estimator is one whose value gets closer and closer to the population
parameter as the sample size increases.

1.3.1.2.3 Efficiency (*)

Efficiency is a relative concept.  Given two different estimators of a population
parameter, the estimator with the greater efficiency is the one with the smaller standard
error for its sampling distribution.  Return to the definition of unbiasedness in 1.3.1.2.1.
Suppose for each sample drawn, we calculated two statistics, the sample mean (which is
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entered into one data set) and the sample median (which is entered into a second data set).
We could then calculate the mean and standard deviation of all the sample means as well
as the mean and standard deviation of all the sample medians.  We would find that both
means equal the population mean.  This indicates that both the sample mean and the
sample median are unbiased estimators of the population mean.  However, we would find
that the standard deviation of the sample means is smaller than the standard deviation of
the sample medians.  This indicates that the sample mean is a more efficient estimator
than the sample median.

1.3.1.2.4 Sufficiency(*)

A sufficient estimator is one that cannot be improved upon by using any other
aspects of the data other than the actual numbers that went into the calculation of the
statistic.  For example, suppose that we used the sample mean for females to estimate the
population mean height for females.  Then the sample mean would be a sufficient
estimator if no other aspect of the data (e.g, eye color, GPA, astrological sign, etc.) could
improve upon estimating the population mean.

1.3.2 Test hypotheses

The second major step in parametric statistics is to test hypotheses and make
inferences about the descriptive statistics.  This area is referred to as inferential statistics
and it uses test statistics.  Inferential statistics are defined as that group of test statistics
used to determine the relative probability that a mathematical model of the hypothesis is
true or false.  The logic behind this is on the complicated side and will be described later in
the course. For now, let us consider the height example to obtain an initial taste of the
logic behind hypothesis testing.

Inferential statistics assume that the hypothesis can: (1) be stated in precise
mathematical terms (i.e., a mathematical model); and (2) the mathematical model is
developed without looking at the data.  The height example asks whether the average
height differs for male and female college students.  Looking at the hypothetical
population, there are three logical possibilities: (1) mean female height exceeds mean male
height or µf > µm;  (2) mean female and mean male height are the same or µf = µm; and (3)
mean female height is less than mean male height or µf < µm.  For reasons that will become
clear later in the course (hopefully!), possibilities (1) and (3) are not mathematically
precise because they cannot specify (or be mathematically manipulated to specify) a
concrete number.  For example, possibility (1) states that the female mean is greater than
the male mean but does not specify the concrete number of units separating the two
means.  Possibility (2), however, can be manipulated to give a concrete number—if µf =
µm, then µf - µm = 0.

Hence, the mathematical model that can be tested is µf - µm = 0.  Logically, it
seems fairly simple to test this.  If the sample mean is the best estimator of the
population mean, then just substitute the sample means into the equation, giving
Y Yf m− = 0 . Consequently, a good test statistic would be the difference between the two
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sample means.  Let δ equal this quantity so that the equation for the test statistic
becomes δ = −Y Yf m .  If δ = 0, then the hypothesis of no average difference in height

between males and females is supported by the data.
But there is an obvious problem with this logic.  Sample means may be the best

estimators of the population means but sample means will not always exactly equal the
population means.  In fact, the likelihood that a sample mean equals the population mean
to the nth decimal place is vanishingly small.  Consequently, we expect δ to be small and
close to 0, but it will very seldom equal 0 exactly.  So not how do we test the
mathematical model?

The answer is that we calculate the probability density function or the sampling
distribution of δ.  (Remember that statisticians call the probability density function of a
test statistic the sampling distribution of the statistic.)   The sampling distribution of δ
will provide us with the probability of observing δs that are close to 0 and the
probabilities of observing δs that are far away from 0.  Hence, we can compare the
observed δ from the data with its sampling distribution and have some reasonable, albeit
probabilistic, way of determining whether the mathematical model is plausible.

2. Parametric Statistics: The Chick and Gary Approach

2.1 Definition of Parametric Statistics

Chick and Gary’s definition of parametric statistics is the same as that given in 1.1
above.

2.2 Key Terms

Chick and Gary’s approach contains all the definitions of  the traditional approach
with one minor twist.  Chick and Gary distinguish two types of mathematical models
whereas above, in 1.2.9, we gave a generic definition of a mathematical model.  The two
types of mathematical models defined by C&G are termed the compact model and the
augmented model.  Note that the two terms are relative.  That is, the same mathematical
model that is the augmented model in one situation may be the compact model in another
situation.  The technical definitions are:

2.2.1 Compact Model

A compact mathematical model is any model that gives the predicted values for all
data observations in p unknown population parameters.
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2.2.2 Augmented model

An augmented mathematical model is any model that gives the predicted values for
all data observations in the same p unknown population parameters as the compact model
plus one or more additional population parameters.

2.3 Steps in C&G’s approach to parametric statistics.

The steps are in C&G’s approach are the same as those in the traditional
approach with a different twist, again involving the compact and augmented mathematical
models.  The steps in C&G’s approach are:

2.3.1 Estimate the parameters of the compact model.

This follows all the conventions of the traditional approach except that it is
applied only to the compact model.

2.3.2 Estimate the parameters of the augmented model.

Again, this follows all the conventions of the traditional approach but the
conventions are applied only to the augmented model.

2.3.3 Assess the relative fit of the two models.

The fit of a model to data is determined by the extent to which the predicted
values generated by the mathematical model agree with the observed values of the data.
The better the predicted values agree with the observed values, the better the fit of the
model.  C&G stress model comparisons by asking the following question, “How much
better does the augmented model fit the data than the compact model?”  If the augmented
model fits the data much better than the compact model, then one must conclude that the
extra parameters in the augmented model are important.  If the augmented model does not
fit the data much better than the compact model, then the extra parameters in the
augmented model are not very important.

3. An example of the traditional and the C&G approach.

The original problem in the height example was to determine whether the mean
heights for male and female US were identical.  For the present, we will make no
assumptions about the distribution of height in either males or females. Instead, we will
assume that the specific population of US male students has an unknown mean height of
µm and an unknown standard deviation of σm and that the specific population of US
female college students has an unknown mean height of µf and an unknown standard
deviation of σf.  We will further assume that the specific population that consists of both
male and female students has an overall mean of µ and a standard deviation of σ.  We may
obtain estimates of all six quantities-- µ, µm, µf, σ, σm,  and σf—from the sample data,
giving respectively Y Y Ym f, , , s, sm, and sf.

In the traditional approach, we would construct a precise mathematical model that
relates the two means.  In section 1.3.2, we saw that a good mathematical model would be
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µ µf m=  so that µ µf m− = 0 . Thus, we could calculate the test statistic δ = −Y Yf m

which should be close to 0 if the mathematical model is correct.  We would then go to a
statistician and ask him/her to construct the sampling distribution (i.e., pdf) of δ for us.
We would then plot out the sampling distribution.  The possible values of δ, ranging from
negative infinity to positive infinity would be on the horizontal axis and the frequency of
δ (i.e., relative probability or relative likelihood) would constitute the vertical axis.  We
would then take the observed value of δ and use the graph to find the relative probability
of observing this δ.  Of course, the value of δ would be large and negative and the relative
probability of observing a large, negative δ would be very small.  Hence, we would
conclude that the mathematical model µ µf m=  is very poor which, translated into

English, means that US college men and US college women do not have the same average
height.

In C&G’s approach, we would develop two mathematical models, a compact
model and an augmented model.  A good compact model would be

Y ei i= +µ .
In other words, the predicted height for any observation, male or female, is the overall
population mean.  In the augmented model, we would like to have one additional
population parameter to reflect sex differences in height.  We could do this by
constructing another variable in the data set to reflect sex.  Let us denote this variable as X
and code it in the following way:  if the observation is a male then X = +1; if the
observation is a female, then X = -1.  We could then write an augmented model as:

Y X ei i i= + +µ β .
Note how the augmented model looks exactly like the compact model with the addition of
one extra population parameter, β. This parameter quantifies sex differences.  If β is large
and positive, then college men are taller than college women.  If β is large and negative
then college women are taller than college men.  If β is close to 0, then the average height
of college men equals that of college women.

The problem now is to see whether the augmented model, Y X ei i i= + +µ β , fits
the data better than the compact model, Y ei i= +µ .  To do this, we follow the steps in
parametric statistics outlined above in section 1.3.  First, we must obtain a “good”
estimates of  the population parameters µ in the compact model and µ and β in the
augmented model.  Let us use the least squares criterion for estimation because that is the
criterion used most often in psychological research.  So we take the problem to a
statistician who tells us the following:  In the compact model, the best estimate of µ is Y ,
the overall sample mean.  In the augmented model, the best estimate of µ is still Y , the
overall sample mean, and the best estimate of β is b which equals
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(NOTE: In estimating these quantities, it is assumed that the number of males in the
sample equals the number of females. And for the moment, let us “punt” on the issue of
how the statistician arrived at these results.)

 Now that we have obtained the parameter estimates, we use inferential statistics
to test the hypothesis about sex differences in height.  There are two ways of doing this,
both of which result in the same mathematical result but express the information in
different ways.

The first is to use b, the estimate of β, as a test statistic.  Re-examine the
equations for the compact and augmented model:

Y ei i= +µ
and

Y X ei i i= + +µ β .

Obviously, if there are no sex differences then β = 0 and the augmented model equals the
compact model.  The only other two logical possibilities for β  are β > 0 (men are taller
than women) or β < 0 (women are taller than men).  However, these two possibilities are
untestable because they are mathematically imprecise—they do not provide a specific
number for β.

Consequently, we want to test the hypothesis that β = 0 using the estimate of β,
i.e. b, as the test statistic.  Once again, we cannot simply look at b and see if it is 0 or not
because of sampling error.  Hence, we take the problem to our favorite statistician and
request a plot of the sampling distribution of b.  This would plot all the mathematical
possibilities of b on the horizontal axis and the relative likelihood of b on the vertical axis.
The observed value of b will be large and positive.  (Recall that X = 1 for males but X = -1
for females.)  The relative likelihood of observing a large positive value of b would be very
small according to the plot.  Hence, we would conclude that it is very unlikely that the
population parameter β is really 0.   Men are indeed taller than women,

A second, mathematically equivalent way of testing whether mean height in males
equals that in females is to compute another test statistic based on the prediction errors.
If the model Y ei i= +µ  is true then the quantity β in the augmented model,
Y X ei i i= + +µ β , should be 0 and the prediction errors in the augmented model should
equal those in the compact model.

To do this, we would estimate µ in the compact model Y ei i= +µ , calculate the

predicted value for each observation (which would equal µ), and then calculate the
residual (i.e., error) for each observation in the sample.  We could then calculate the sum
of squared errors for the compact model.  Let us denote the sum of squared errors for the
compact model as SSEC. Then
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SSEC = eC1
2 + eC2

2 + ... + eCN
2 = eCi

2

i =1

N

∑
(The subscript C is used to signify that the errors have been computed from the compact
model.)

We would then estimate µ and β from the augmented model, Y X ei i i= + +µ β  and
calculate the predicted value for each observation in the sample.  Here, the predicted value
would equal µ + β if the observation is male but µ - β if the observation is female.  We
would then calculate the prediction error (i.e., residual) for each observation.  Finally, we
would calculate the sum of squared prediction errors, say SSEA, for the augmented model:

SSEA = eA1
2 + eA 2

2 + ... + eAN
2 = eAi

2

i =1

N

∑ .

If the augmented model is really a better model, then SSEA should be much smaller
than SSEC.  If the augmented model is not that much better then SSEA should be roughly
equal to SSEC.  So let us develop a test statistic based on the two sums of squared error,
SSEA and SSEC.

At first glance, a good test statistic might be the simple difference between the
two or SSEC - SSEA.  If the augmented model is not better than the compact model then
SSEC - SSEA should be close to 0.  But if the augmented model is superior to the compact
model, then SSEC - SSEA should be large and positive.  There are two problems, however,
with SSEC - SSEA that make this a poor test statistic—(1) it depends on sample size; the
larger the sample size, the larger the sum of squared error; and (2) it depends on the
measurement metric; for example, sum of squared error will be larger for height measured
in centimeters than for height measured in inches.

To get around these problems, C&G suggest that the difference SSEC - SSEA be
divided by SSEC.  Hence, the test statistic is

SSE SSE
SSE
C A

C

−
.

This is an important test statistic that C&G call PRE for the Proportional Reduction in
Error.  Mathematically, it can be shown that PRE has a lower limit of 0 (when SSEA =
SSEC)1 and an upper limit of 1 (when SSEA = 0).  Hence, if there is no mean difference in
height, then the squared error for the augmented model will equal than for the compact
model and PRE should be close to 0.  If the augmented model is superior, then SSEC

should be greater than SSEA and PRE should be positive.
Hence, we could take PRE to our favorite statistician and request the sampling

distribution of PRE under the assumption that the augmented model is really the same as
the compact model. (Remember, we cannot find the distribution of PRE under the
assumption that the augmented model is better than the compact model because, once
again, we would have to come up with a specific number for b in the augmented model.)
The statistician would then give us the sampling distribution of PRE.  This would plot the
value of PRE, ranging from 0 to 1, on the horizontal axis and the relative likelihood of

                                                
1 For technical reasons, SSEA must always be less than SSEC.  Hence, SSEC - SSEA can never be negative.
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observing that value on the vertical axis.  Because men are taller than women, the actual
value of PRE would be large and it would be very unlikely to observe a large value of PRE
under the hypothesis that men and women have the same height.

4. Four Important Descriptive Statistics and Their Formula

Both the traditional and the C&G approach use four basic descriptive statistics.
Almost all other formula can be expressed as a function of one or more of these statistics.
The four statistics are:

4.1 Arithmetic Mean

The arithmetic mean is simply the arithmetic average.  It is computed by summing
the scores on a variable over all observations and then dividing by the number of
observations.  For a specific population, the formula is

µ = =
∑ X

N

i
i

N

1 .

The sample mean is an unbiased estimator of the population mean. Hence,

    
ˆ µ = X =

X i
i =1

N

∑
N

.

The hat (^) over the µ denotes an estimator of µ.  Thus, the English meaning of the
symbol   ̂  µ  is “an estimate of the population mean.”

There are types of means other than the arithmetic mean (the geometric mean and
the harmonic mean).  However, these are seldom encountered in traditional parametric
statistics, so the term “the mean” is always taken as the arithmetic mean.

The arithmetic mean is a measure of central tendency.  That is, it answers the
question, “Around which number are the scores clustered?”

4.2 Variance

The variance is a measure of variability.  It answers the question, “How dispersed
are the scores around their central tendency?”  There are two types of variance.

4.2.1 Variance of a Specific Population

The variance of a specific population is the average squared deviation from the
mean.  One would first calculate the arithmetic mean or µ for the specific population.  For
each observation in the specific population, one would then calculate the deviation from
the mean.  For the ith observation, the deviation from the mean is simply X i −µ .  One

would then square each deviation from the mean giving ( )X i −µ 2  for the ith observation.
The variance of the specific population is then the arithmetic average of these squared
deviations.  Consequently, the formula for the variance of a specific population is
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σ
µ

2

2

1=
−

=
∑ ( )X

N

i
i

N

.

4.2.2 Sample Variance as an Estimator of the Variance of a Specific or Hypothetical
Population

Because it is usually impractical to enumerate all the observations in a specific
population and because it is impossible to calculate any parameter for a hypothetical
population, sample data are used to estimate the population variance.  When sample data
are used to estimate the population variance the definition of a variance changes slightly.
Here, the variance is defined as the sum of the squared deviations from the mean divided
by the degrees of freedom left in the data.

We have encountered the sum of squared deviations from the mean above in
discussing the variance of a specific population.  Here, we just note some important
terminology.  The sum of squared deviations from the mean is usually just called the sum
of squares and is abbreviated as SS.

We have not encountered the term degrees of freedom before.  In English, the
degrees of freedom for an estimator is the amount of information required over and above
the estimator to figure out all the scores in a sample.  For example, suppose we had 6
scores and calculated the mean. Then, given that we know the mean, how many of the six
scores would we have to know before we could figure out the remaining scores?  The
answer is 5.  Once we know the mean, then we only need to know any 5 scores to figure
out the remaining score.  Consequently, once the mean is known the data have 5 degrees
of freedom left.  In general, if a mean is calculated from N scores, then there will be N - 1
degrees of freedom left in the data.

Consequently, the formula for using sample data to estimate a population variance
becomes

    
ˆ σ 2 = s2 =

SS
df

=
( X i − X )2

i =1

N

∑
N − 1

.

Once again, the hat (^) over σ2 denotes an estimator of σ2; translated into English, the
notation   ̂  σ 2 means “an estimate of the population variance.”  Because every individual
squared deviation from the mean must be positive, the sum of squared deviations from the
mean must also be positive.  Likewise, the degrees of freedom must always be positive.
Consequently, the variance will always be positive (or 0, if all the scores are the same
number).  If you ever calculate the variance and arrive at a negative number, then you
must have made a computational error.

Closely related to the variance is its sibling statistic, the standard deviation.  The
standard deviation is simply the square root of the variance.  Consequently, because

σ σ2 = , the symbol σ is used to denote a population standard deviation. For analogous
reasons, the symbol s is often used to denote the estimate of a population standard
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deviation from sample data.  Because a variance is always positive, its standard deviations
is always taken as the positive root.

4.3 Covariance

The covariance is a statistic that measures the extent to which two variables vary
together.  If we let X denote one variable and Y denote the other variable, then the formula
for the covariance in a specific population is

cov( , )
( )( )

X Y
X X Y Y

N

i i
i

N

=
− −

=
∑

1 .

Unlike the mean (where µ customarily denotes the population parameter) and the
variance (where σ2 customarily denotes the population parameter), there is no
conventional Greek letter used to denote the covariance.

When sample data are used to estimate the population covariance, the
denominator is replaced by the degrees of freedom or N - 1. Thus, the formula for the
estimate of a population covariance is

    
cˆ o v(X,Y ) =

(X i − X )(Yi −Y )
i =1

N

∑
N − 1

.

There are two attributes of a covariance—(1) the sign of the covariance and (2) the
absolute value of the covariance. The sign of a covariance indicates the direction of the
relationship between X and Y.  A positive covariance means that high scores on X are
associated with high scores on Y and, conversely, that low scores on X are associated with
low scores on Y.  An example of a positive covariance would be the relationship between
height and weight.  People who are taller than average also tend to weigh more than the
average person.  Similarly, people who are smaller than average tend to weigh less than
the average person.

A negative covariance denotes an inverse relationship.  Here high scores on X are
associated with high scores on Y while, conversely, low scores on X are associated with
low scores on Y.  An example of a negative covariance would be the relationship between
grades and the amount of time spent partying.  Folks who party a lot, and presumably do
not have as much time to study, tend to have low grades while students who sacrifice
play for study will tend to get higher grades.

The absolute value of a covariance is a measure of the magnitude of the
relationship.  A covariance of 0 denotes no statistical association between X and Y.  As
the covariance departs from 0 in either a positive or negative direction, the relationship
between X and Y becomes stronger.

4.4 Correlation.

Although most major statistical procedures operate with the covariance, the
covariance is a very poor descriptive statistic for communication among scientists.  The
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reason is that the telling someone that “the covariance is 20”  is akin to telling him/her that
the price of an ice cream cone is 20 herns without specifying how much a hern is.  If a
hern is close to an English pound, then it is a very expensive ice cream cone (about $35).
But if a hern is close to an Italian lira, then the ice cream cone is quite the bargin (about 6
cents).  Similarly, a covariance of 20 might indicate a very strong relationship or one that
is hardly worth caring about—it all depends on the measurement units for X and Y.

To overcome this difficulty, statisticians convert a covariance into the statistical
equivalent of a common currency, the correlation coefficient2. The advantage of the
correlation coefficient is that it has all the properties of a covariance (i.e., the sign denotes
direction and absolute value denotes strength of association) but it has a mathematical
lower bound of -1.0 and a mathematical upper bound of 1.0.  When a correlation equals -
1.0 or 1.0, then one can perfectly predict the value of Y from any X value.  That is, there
are no prediction errors for all observations.  As the correlation coefficient gets closer to
0, the statistical relationship between the two variables becomes weaker.  Like a
covariance of 0, a correlation of 0 denotes no statistical association between two variables.

Consequently, it is possible to compare the magnitude of correlations while it is
not possible to compare the magnitude of covariances.  For example, if the correlation
between variables X and Y is .20 while the correlation between variables A and B is .35,
then it is possible to state that the variables A and B are more strongly associated than
variables X and Y.  The same could not be made for covariances.

The Greek letter rho or ρ usually denotes a population correlation.  The estimate
of the population correlation is given by the Roman equivalent, r, although the uppercase
R is frequently encountered.  The formula for the population correlation is

ρ
σ σXY

X Y

X Y
=

cov( , )
.

For sample data, the sample statistics are replaced into the above equation, giving

    
ˆ ρ XY = rXY =

cˆ o v(X ,Y )
sX sY

.

One important property about correlations is that the square of the correlation
gives the proportion of variance in one variable attributable or predicted by the other
variable.  For example, if the correlation between height and weight is .60, then 36% of the
variance in weight is predictable from knowing height.  Similarly, 36% of the variance in
height is predictable from knowing weight.  It is essential never to think of the phrases
"variance atributable" or "variance predicted by" in causal terms.  A correlation coefficient
only denotes a statistical relationship.  The statistical association may or may not be
causal, but a correlation coefficient alone is not sufficient to deteremine causality.

                                                
2 There are actually several different types of correlation coefficients.  The one outlined here is officially
called the Pearson product-moment correlation after a famous statstician, Karl Pearson, who developed
many of its principles around the turn of the century.


