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PRINCIPAL COMPONENTS

Many research projects gather a large number of variables. For example, administering the

MMPI (Minnesota Multiphasic Personality Inventory) gives one at least 566 variables because

the MMPI has 566 items. For most research purposes, it is unwieldy and impractical to analyze

and then subject the reader to an analysis of 566 variables. Thus, we would like some objective

means of reducing the variables to a manageable number. One of the primary purposes of

principal components analysis or PCA is to reduce the number of variables.

The logic of PCA is as follows. We would like to reduce the number of variables but

preserve as much of the variability in the data as possible.  To do this, let us create a new variable

from the data that is a linear combination of the original variables. Let Z denote this new variable

and let X1, X2, ... Xp denote the original variables.  By making Z a linear combination of the original

variables, we imply the mathematical formula

Z = a1X1 + a2X2 + ... apXp (1.0)

where a1, a2, ... ap are weights assigned to the original p variables. Note that Equation (1.0) is

similar to the formula for a multiple regression equation--Z is analogous to the "dependent"

variable, the a's are the b weights, and the X's are the predictor variables. In PCA, however, there

is no intercept and there are no residuals.

To preserve as much variability as possible, we want to make the variance of Z as large as

possible. Thus, the goal of PCA is to select values of the a's so that the variance of Z is as large

as possible. But we have to be sensible about this. The variance of Z will begin approaching

infinity as the individual a's go to either plus or minus infinity. To avoid this, PCA selects the a's

subject to the constraint that ai
2 =1.0

i
∑ ,  or the sum of the squared a's equals unity.

Technically, this is called "normalizing" a vector, the vector in this case being the vector of a's.

Once the weights are calculated, then the variable Z is called the first principal component or first

PC.
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To see how the weights are identified, let C denote the covariance or correlation matrix for

the Xs.  The variance of Z then equals aTCa where a is the vector of a weights. We want to

maximize the variance of Z subject to the constraint that aTa = 1. Thus, we can construct the

augmented Lagrangian function

F(a) = aTCa + λ(aTa - 1) (1.1)

where λ is the Langrangian multiplier. We want to maximize F(a) with respect to vector a.  We

may do this by taking the first derivative of F(a) with respect to a and setting it to a vector of 0s.

Doing this gives

      

∂F(a)
∂a

= 2Ca − λa = 0 (1.2)

or

(C - λI)a = 0 . (1.3)

One solution to (1.3) is to set all the as equal to zero. This, however, is called a trivial

solution. We require a nontrivial solution or, in other words, substantive values for the elements

of a.  To solve for this, suppose for the moment that we have some real value for λ such that the

matrix (C - λI) is known and has an inverse.  Premultiplying both sides of (1.3) by the inverse of

(C - λI) gives

a = (C - λI)-10

or a must equal 0. Hence, if matrix (C - λI) has an inverse, the only solution to (1.3) is the trivial

solution.

We must conclude then that in order to have a nontrivial solution, the matrix (C - λI)

must NOT have an inverse. That is, (C - λI) must be singular and its determinant must equal 0,

or

|C - λI| = 0 (1.4)

In our overview of matrix algebra, we saw that (1.4) is called the characteristic equation for

matrix C and that, because C is symmetric, there will be p real values of λ. These p λs are the
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eigenvalues of C. And for any given eigenvalue, the solution of (1.3) for a reveals that a is an

eigenvector of C.

Now let us return to (1.3) and rewrite it as

Ca = λa (1.5)

Premultiply both sides by aT giving

aTCa = aTλa = λaTa. (1.6)

But aTCa is the variance of variable Z and we have constrained aTa to equal unity. 

Consequently, (1.6) implies that

λ = Var(Z).

In other words, the variance of a principal component is actually an eigenvalue of the matrix C. 

Hence, to maximize Var(Z), all we have to do is select the largest eigenvalue of C and take its

associated eigenvector as the weights in vector a.

The second principal component may be defined as that linear combination of the Xs that

has the second largest variance, or

Z2 = a12X1 + a22X2 + ... + ap2Xp

Here, we subscript the Z and double subscript the as so that aij is the weight assigned to the ith

variable for the jth principal component. Since Var(Z2) is an eigenvalue of C, we simply select the

second largest eigenvalue and its associated eigenvector as the solution to a2. We may continue

with this logic, each time selecting the next highest eigenvalue and its associated eigenvector as the

next principal component.

A consequence of using the eigenvalues as the variance for the principal components and

the eigenvectors as the weights is that the principal components will be uncorrelated. Recall that

the matrix of eigenvectors is an orthogonal or orthonormal matrix. That is, if A is the matrix of

eigenvectors, then ATA = I. We may write the equation for the principal componets in matrix

form as

z = Ax
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where z is a p by 1 vector of principal components and x is a p by 1 vector of variables.

Premultipling both sides by AT, giving

ATz = ATAx = Ix = x, (1.7)

reveals that the variables may be written as a linear combination of the principal components.

Now take the covariance matrix of x in (1.7),

ATCzzA = C

where Czz is the covariance matrix among the principal components. But in the overview on

matrix algebra, we have seen that C = ATΛA where Λ is the diagonal matrix of eigenvalues. Hence,

the covariance matrix among the principal components is a diagonal matrix, making all the

components uncorrelated with one another.

There is another definition of the principal components. We have seen that we may write

the variables as a function of the weights and the principal components. That is true as long as

we have as many components as there are variables. If there are fewer components, then there

will be some error in writing the variables. Thus, for the first component, we may write

X1 = a11Z1 + U1

X2 = a21Z1 + U2

.

Xp = ap1Z1 + Up

where Ui denotes a residual for the ith variable. In general, let X denote the N by p matrix of

observed scores for N individuals on p variables, let Aj
T denote the j by p matrix of weights for

the first j principal components (i.e., the columns of Aj contain the first j eigenvectors), let Z

denote the N by j matrix of principal component scores for the individuals and let U denote the N

by p matrix of residuals. Then we may write

X = ZAjT + U

Mathematically, it can be shown that the first j principal components are those uncorrelated

variables that are the best linear predictors of the observed variables in the sense that they

minimize the trace(UTU). That is, if one could construct any linear predictor of the set of p
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observed variables and regress the p variables on the predictor, then the best (in terms of least

squares error and maximum variance) predictor would be the first principal component. The next

best predictor would be the second principal component, etc.

There is yet another interpretation of PCA. Because eigenvectors and eigenvalues

"redimension" a matrix, PCA redimensions the original variables by finding the dimension on

which there is the largest individual differences (the first PC), a perpendicular dimension on

which there is the next largest amount of variability (the second PC), etc.

So what's the big deal? We began with 566 MMPI items and we end up with 566 PCs!

How does that solve the problem? It actually solves the problem if we realize that each

successive PC is less variable that its predecessor. At some point we are going to be deriving PCs

that account for a trivial amount of variability. The advantage of PCA comes when we ignore

those trivial components. By using the most important PCs instead of the original variables, we

can reduce the size of the problem. The big difficulty with PC analysis (and with factor analysis)

lies in deciding where to draw the line between an important PC and a trivial PC. There are no

clear-cut answers here.

Among the potential solutions to this problem, two have gained wide popularity. The

first has been termed the Kaiser (1960) criterion. The Kaiser criterion accepts only those

components with an eigenvalue greater than 1.0. The second criterion is the scree test proposed

by Cattell (1966). In this test one plots the eigenvalues and then attempts to draw a straight line

connecting the last j eigenvalues. All those components that have eigenvalues above the straight

line are accepted.

An Example

Table 1.1 presents the correlation matrix for six tests of cognitive ability for 250

individuals: Vocabulary, Reading Comprehension, Sentence Completion, Mathematics,

Geometry, and Analytical Reasoning. Instead of using all six tests, it might be desirable to have

only a few measures of cognitive ability on everyone. Principal components may be used to
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reduce the number of variates.

______________________________________________________________________________

Table 1.1. Correlation matrix for six tests of cognitive ability.

Vocab Read Sent Math Geom Anlyt

Vocab. 1.000 .803 .813 .708 .633 .673

Read. .803 1.000 .725 .660 .526 .636   

Sentences .813 .725 1.000 .618 .575 .618  

Math. .708 .660 .618 1.000 .774 .817 

Geom. .633 .526 .575 .774 1.000 .715 

Anlyt. .673 .636 .618 .817 .715 1.000  

______________________________________________________________________________

The eigenvalues of the correlation matrix are 4.43, .68, .32, .24, .17, and .15. Because the

sum of the eigenvalues is 6, the first principal component accounts for 4.43/6 or 73.8% of the

variance. The second component accounts for .68/6 or 11.3%, and the remaining components

accounts for 5% or less. According to the eigenvalue criteria, only one component would be

selected. The scree criteria, on the other hand, suggests that 2 components be computed and that

is what we shall interprete.

The eigenvectors appear in Table 1.2. The first eigenvector suggests a broad component

that is weighted almost equally by every cognitive test. This variate might be called "general

cognitive ability." The second eigenvector is bipolar, one pole being characterized by

Mathematics, Geometry, and Analytical Reasonsing. The opposite pole is marked by negative

weights for Vocabulary, Reading Comprehension, and Sentence Completion. Scores on this

second component would reflect quantitative ability versus verbal ability. The remaining

eigenvectors are shown in Table 1.2 for completeness. In an ordinary application, they would not
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be presented or interpreted.

______________________________________________________________________________

Table 1.2. Eigenvectors of the correlation matrix for six tests of cognitive ability.

Eigenvector:

Test    1    2    3    4    5    6

Vocabulary .427 -.338 .123 .123 -.411 -.710

Reading .401 -.434 -.471 .479 .387 .225

Sentences .400 -.434 .488 -.491 .063 .410

Math .421 .360 -.237 .071 -.663 .438

Geometry .388 .510 .545 .415 .345 -.044

Analytical .411 .346 -.415 .580 .344 -.289

______________________________________________________________________________


