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Linear Transformations and Linear Composites

I.  Linear Transformations of Variables.

Means and Standard Deviations of Linear Transformations
A linear transformation takes the form of creating a new variable from the old variable

using the equation for a straight line:

new variable = a + b* (old variable)

where a and b are mathmatical constants.  What is the mean and the variance of the new variable?
To solve this let X denote the old variable and assume that it has a mean of   X  and a variance of

    SX
2 .  Let X* denote the new variable.  Then

X* = a + bX

The mean of X* is

    
X * =

∑X *

n

  
=

∑ a + bX( )
n

  
=

∑a +∑ bX

n

  
=

∑a + b∑X

n

  
=

na + b∑ X

n

  
=

na

n
+ b

∑ X

n
  = a + bX 

so
    X * = a + bX .

The variance of the new variable, X*, can be found in a similar way.  The variance in X* is
simply the variance of the quantity (a + bX).  So, we merely substitute and use some algebra:

    
SX*

2 =
∑ X * −X *( )2

n

    
=

∑ a + bX − a − bX ( )2

n

    
=

∑ bX − bX ( )2

n
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=

∑ b X − X ( )[ ]2
n

    
=

∑b2 X − X ( )2

n

    
= b2 ∑ X − X ( )2

n

    = b2SX
2

so

    SX* = b2SX
2 .

One of the most important applications of linear transforms comes in standardization.
To remove the effects of, say, school grade in a data set on reading ability, one could first sort the
data by grade and then standardize the variables so that each grade has the same mean and the
same standard deviation.  One of the most frequently used methods of standardization is to Z-
transform a variable so that the mean and standard deviation of the new variable are, resepctively,
0 and 1.  The familiar formula for this is

    
Z =

( X − X )
sX

With a little bit of algebra, we can rework this formula to

    
Z = −

X 
sX

+
1
sX

 
 
  

 
 X

This is the same as the linear equation

new variable = a + b * old variable.

The new variable is Z and the old variable is X.  The value of a is

  
−

X 
sX

and the value of b is

    

1
sX

 .

Hence the mean of Z must be

    
Z = a + bX =−

X 
sX

+
1
sX

 
 
  

 
 X = 0
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and the variance of Z will be

    
sZ

2 = b2sX
2 =

1
sX

 
 
  

 
 

2

sX
2 = 1.0  .

Transforming data to have a desired mean and/or standard deviation
The formulas given above may be used to demonstrate how to transform variables to have

a desired mean and standard deviation.  For example, suppose that we had raw scores on a newly
developed MMPI scale and would like to express these scores in the customary metric of the
MMPI, T scores with a mean of 50 and a standard deviation of 10.

Let X denote the variable in raw units with observed mean   X  and observed standard
deviation   sX .  Let  X d  denote the desired mean and   sd denote the desired standard deviation.
Taking the square root of equation given above for the variance of a transformed variable gives

    sd
2 = b2sX

2

so

 
  
b =

sd

sX

 .

Thus the slope is simply the desired standard deviation divided by the observed standard
deviation.

The intercept may be found by substituting this expression into the equation for the mean
of a transformed variable:

  
X d = a + bX = a +

sd

sX

 
 
  

 
 X 

so

  
a = X d −

sd

sX

 
 
  

 
 X 

Putting these expressions for a and b together (plus doing a little algebra) gives the formula for
the desired transformation:

  
Xd = X d + sd

X − X 
sX

 
 
  

 
 

In plain English, to transform a variable to have a desired mean and a desired standard deviation,
simply take the Z-transform of the original variable, multiply it by the desired standard deviation,
and then add the desired mean.  In the case of the MMPI, where we wanted scores with a mean
of 50 and a standard deviation of 10, we would simply find the Z transform of the original score,
multiply that by 10, and then add 50.
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 Covariance and Correlation of Two Linearly Transformed Variables
What is the covariance between two variables that have been linearly transformed?  Here,

let the old variables be X and Y and the new variables be denoted as, respectively, X* and Y*.
Then the transformation will take the form

X* = a + bX
and

Y* = c + dY. .

The covariance is defined as

    
cov X*,Y *( ) =

∑ X * −X *( ) Y * −Y *( )
n

.

One again, substitute and do some algebra:

  
=

∑ a + bX − a − bX ( ) c + dY − c − dY ( )
n

  
=

∑ bX − bX ( ) dY − dY ( )
n

  
=

∑ b X − X ( )[ ] d Y − Y ( )[ ]
n

  
=

∑bd X − X ( ) Y − Y ( )
n

  
= bd

∑ X − X ( ) Y − Y ( )
n

    = bd cov(X ,Y)
so

    cov X*,Y *( ) = bd cov(X ,Y) .

Thus, a linear transformation will change the covariance only when both of the old
variances are multiplied by something other than 1.  If we simply add something to both old
variables (i.e., let a and c be something other than 0, but make b = d = 1), then the covariance will
not change.

Although a linear transformation may change the means and variances of variables and the
covariances between variables, it will never change the correlation between variables.  Consider
X* and Y* as given above.  We have already shown that the variances of these two variables are

    SX*
2 = b2SX

2

and

    SY*
2 = d2SY

2 .

We have also demonstrated that the covariance between the two transformed variables is
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    cov X *,Y *( ) = bd cov(X ,Y) .

The correlation between the transformed variables will be

    
corr X *,Y *( ) =

cov X *,Y *( )
SX *SY *

Again, we substitute and perform some algebra:

    

corr(X *,Y *) =
bd cov X ,Y( )
b2SX

2 d 2SY
2

    

=
bd cov X ,Y( )

b2d2 SXSY

    
=

bd

bd

cov X,Y( )
SXSY

    
=

cov X ,Y( )
SXSY

which  is the correlation between X and Y.

II.  Linear Composites.

Mean of a Linear Composite
Here, we wish to examine what happens when an entirely new variable is constructed as a

linear function of several old variables.  Let Xi denote the ith old variable and Y the new variable.
We can make the case somewhat more general by assuming that we add a residual, U , that is
actually a random number taken from a standard normal distribution with mean of 0 and standard
deviation of 1.  The equation for the new variable is

    
Y = a + b1X1 + b2X2+...bpXp + uU .

(If this business of the random variable, U , is bothersome, then simply let the quantity u  equal 0
in the equation and in all that follows. Nothing of substance will change)

We can now go through the same algebra that we used above in the transformation of an
old variable into a new variable to calculate the variance of variable Y .  The only trick here is to
recall that variable U will have a mean of 0, and because it is random, will be uncorrelated with all
the Xs.

Consider the mean. The mean of Y is the mean of

    a+ b1X1 + b2 X 2 + ... bpX p + uU .
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=

(a + b1X1i + b2X 2 i + K bp X pi + uU )
i=1

N

∑
N

      
=

Na + b1 X1i
i=1

N

∑ + b2 X2 i
i=1

N

∑ + K bp X pi
i=1

N

∑ + u U i
i=1

N

∑
N

      
Na
N

+ b1

X1i
i=1

N

∑
N

+ b2

X 2i
i=1

N

∑
N

+ K bp

X pi
i=1

N

∑
N

+ u
U i

i=1

N

∑
N

=

      = a + b1X 1 + b2X 2 + K bpX p + uU .

      = a + b1X 1 + b2X 2 + K bpX p + 0.

so

    Y = a + b1X 1 + b2X 2 + ... bp X p .

Variance of a Linear Composite
Similar logic will write the variance of Y as a function of the variables on the right side of

the equation.  We will not go through the elaborate algebra, but instead give the result:

    
SY

2 = ∑
i =1

P

∑
j =1

P

bi bj cov X i , X j( ) + u2

Note that the term     u
2  is NOT included in this summation.

For example, suppose that the new variable is a linear composite of three variables, or

    Y = a + b1X1 + b2X2 + b3X3 + uU  .
Then

    
SY

2 = b1
2SX1

2 + b2
2SX2

2 + b3
2SX3

2 + 2b1b2 cov X1 ,X2( ) + 2b1b3 cov X1 , X3( ) + 2b2b3 cov X2 ,X3( ) + u2

(Recall, here, that 
    
cov Xi , Xi( ) = SX i

2 ).

Covariance of Two Linear Composites
With similar algebra, it can be shown that the covariances between any two linear

composites can be written in terms of the bs, and the covariances among the Xs and the Us.  Let

    
Y1 = a1 + b11X1 + b12X2+...b1pXp + u1U1

and

    
Y2 = a2 + b21X1 + b22X2+... b2pXp + u2U2  .

Then
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cov Y1,Y2( ) = ∑

i=1

P
∑
j=1

P
b1ib2 j cov Xi ,X j( ) + u1u2 cov U1,U2( )

If all the variables are standardized, the bs become β coefficients, all of the covariances
become correlations, and all variances become 1.0.  Then

    
SY

2 = 1 = ∑
i =1

P

∑
j =1

P

β i β j corr X i , X j( ) +u2

and

    
covY1,Y2( ) = corr Y1,Y2( ) = ∑

i =1

P

∑
j =1

P

β1i β2j corr X i , X j( ) +u1u2corr(U1,U 2).

III. Transformations and Linear Composites in Matrix Algebra
Transformations of variables can be economically written using matrix algebra.  Let X

denote the old variable and Y denote the new variable.  We have seen that the transformation for
the ith individual takes the form

  Yi = a + bX i

Now let x denote a column vector of old variable values and y a column vector of new variable
values.  Equation ( ) above may now be written as

    

Y1

Y2

.

YN

 

 

 
 
 

 

 

 
 
 

=

a

a

.

a

 

 

 
 
 

 

 

 
 
 

+

X1

X2

.

X N

 

 

 
 
 

 

 

 
 
 
b

or

    y = a + xb

If we wish to make a new variable as a linear composite of several old variables, then let X
denote a matrix of the old variable values.  The rows of X correspond to the observations and the
columns to the variables.  Let b denote a column vector of weights.  The equation becomes

    

Y1

Y2

.

YN

 

 

 
 
 

 

 

 
 
 

=

a

a

.

a

 

 

 
 
 

 

 

 
 
 

+

X11 X12 . X1 p

X 21 X22 . X2 p

. . . .

X N 1 XN 2 . X Np

 

 

 
 
 

 

 

 
 
 

b1

b2

.

bp

 

 

 
 
 

 

 

 
 
 

or
  y = a + Xb .
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A more general formulation permits a linear transformation of one set of variables into
another, new set of variables.  That is, instead of a column vector of Ys, there is now a matrix of
Ys.  Let Xij denote the score of the ith person on the jth old variable and let Yij denote the score of
the ith person on the jth new variable. Let aj denote the constant for the jth variable, and let bij

denote the weight used to multiply the ith X variable for the jth Y variable.  The transformation is

    

Y11 Y12 . Y1q

Y21 Y22 . Y2q

. . . .

YN 1 YN 2 . YNq

 

 

 
 
 

 

 

 
 
 

=

a1 a2 . aq

a1 a2 . aq

. . . .

a1 a2 . aq

 

 

 
 
 

 

 

 
 
 

+

X11 X12 . X1p

X21 X22 . X2 p

. . . .

XN 1 X N 2 . XNp

 

 

 
 
 

 

 

 
 
 

b11 b12 . b1q

b21 b22 . b2 q

. . . .

bp1 bp 2 . bpq

 

 

 
 
 

 

 

 
 
 

or
Y = A + XB .

The general case for the mean and the variance-covariance matrix of the transformed
variables can now be written.  Let

    

Y 1
Y 2
.

Y q

 

 

 
 
 

 

 

 
 
 

=

a1

a2

.

aq

 

 

 
 
 

 

 

 
 
 

+

b11 b21 . bp1

b12 b22 . bp2

. . . .

b1 q b2 q . bpq

 

 

 
 
 

 

 

 
 
 

X 1
X 2
.

X p

 

 

 
 
 

 

 

 
 
 

or

    y = a + Btx .

Likewise, the covariance matrix may be written in a general form.  Let Cij denote a
covariance matrix between the i variables (the rows of the matrix) and the j variables (the
columns).  The variance-covariance matrix for the new variables is

    Cyy = B tCxxB

and the covariance matrix between the transformed variances and the original variables is

    Cyx = B tCxx .

Once again, the transformation of several X variables into a single Y variable is a special instance
of this equation where B becomes a column vector.  If one transforms a single X into a single Y,
then B is a column vector and matrix   Cxx  becomes a scalar equal to the variance of X.


