PSYC 3102 DR HEWITT

HOMEWORK \# 2

Answer sheet

1 a) autosomal recessive
b) Chi-square test

Hypothesis: if Waltzing is caused by autosomal recessive, expect 3:1 normal to Waltzer in F2
Test Obs Exp O-E $(\mathrm{O}-\mathrm{E})^{2}(\mathrm{O}-\mathrm{E})^{2} / \mathrm{E}$
$\begin{array}{lllll}124 & 128 & 4 & 16 & 0.125\end{array}$
$\begin{array}{lllll}47 & 43 & 4 & 16 & \underline{0.36}\end{array}$

$$
\Sigma=0.485 \quad=\mathrm{X}_{1 \mathrm{df}}^{2} \quad \sim 50 \% \text { probability }
$$

Conclusion (ie. reject or retain hypothesis)
Retain, since prob. of getting such observed numbers is high
2. a) A Hh

B hh

C hh
D Hh
b) 0.5
c) 0.5
d) 0.25
3. a) A

B
$\mathrm{C} \quad$
b) $2 / 3$
c) Pp or pp
d) cannot marry Pp or $\mathrm{pp} \quad$ freq of $\mathrm{Pp}=2 \% \quad$ freq of $\mathrm{pp}=1 / 10000$

$$
\mathrm{PP}=1-(0.2+0.00001=0.97999 \text { around } 98 \%
$$

4. Family Children Phenotype Possible genotype : MOM DAD

A 2 males normal XX XY most likely
2 females normal

B $\quad 2$ females color-blind 3 females normal $\quad X^{C} X \quad X^{C} Y$ 2 males color-blind

C 4 males color-blind $\quad X^{C} X \quad X Y$ most likely
4 females normal

D $\quad 2$ females color-blind $\quad X^{C} X \quad X^{C} Y$
2 males normal
5. Pedigree diagram for Family B described above

Pedigree must show Mom and Dad and all 7 children, affected shaded, genotypes under symbols

