Psych 3102 Introduction to Behavior Genetics

Lecture 12

Quantitative analysis

Covariance between relatives

Sources of covariance between relatives

covariance a measure of shared variance

(how similar the variation is between two samples or how well measurements in one sample predict those in the other)

correlation a standardized measure of covariance

- similarity between measurements of 2 samples of relatives for a trait will cause them to covary
- there will be no covariance between 2 samples of individuals picked at random from a population and measured for the trait

 $V_{(P)} = V_{(G)} + V_{(E)}$

Substituting covariance for variance:

 $COV_{(P1)(P2)} = COV_{(G+E)(G+E)}$ where 1 and 2 are scores for relatives

For relatives:

- only <u>shared genes</u> and <u>shared</u> environment can be sources of covariance (similarities)
- segregating genes and non-shared environment are sources of variance (differences)

so, cov $_{(P1)(P2)}$ = cov $_{(Gc+Ec)(Gc+Ec)}$

= cov GcxGc + cov EcxEc + 2covGcEc co

[cov of Gc on Gc = var Gc cov of Ec on Ec = var Ec]

Ignoring G x E interactions and correlations, this simplifies to:

ie. the correlation between relatives for a trait equals the sum of the variances due to shared environmental effects and shared genetic effects

Additive and dominance genetic effects

 we can make some predictions about the additive and dominance effects of genes on variance for a trait and covariance between relatives:

Sources of	f phenotypic covariance	V _A	V _D	V _{Ec}
between:				<u>.</u>
Parent/of	fspring (P/O)			
Half-sibs (HS)			
Full sibs (F	ES)			
DZ twins	reared together			
MZ twins	reared together reared apart			

Other sources of covariance between relatives:

- 1. assortative mating
 - --
- 2. epistasis
 - _ --

MZ twin correlation gives best estimate of total genetic variance when either of these effects exist

Note on statistical significance

- when an effect reaches 'statistical significance' we usually assume it is a real effect, not occurring by chance
- very small but consistently-occurring effects can reach statistical significance
- we can expect small gene effects to reach significance if we use a large sample

Heritability

V _{phenotype} = V _{genes} + V _{environment} heritability = the proportion of phenotypic variation accounted for by genetic variation			
Heritability =			
Effects of gene variation in a population are measured, NOT genetic effects in an <u>individual</u>			
high heritability?	low heritability?	zero?	

2 types of heritability:

broad heritability - estimates <u>all</u> genetic effects $H^2_B = \frac{V_G}{V_P}$ where narrow heritability - estimates only <u>additive</u> gene effects $h^2 = \frac{V_A}{V_P}$ We will use twin correlations to estimate heritability: $r_{MZ} = H^2$ (+ c^2 if c^2 exists) and $r_{DZ} = \frac{1}{2} h^2$ (+ c^2 if it exists) where c^2 exists $h^2 = 2 (r_{MZ} - r_{DZ})$ Heritability allows a comparison of the relative importance of genes and environment to the variation of traits important in predicting response to selection in agriculture & evolutionary biology, & to prediction of risk in medicine

Family resemblance

 narrow heritability (h²) determines most of the resemblance between relatives due to genes

Relationship		Estimate of		<u>Estimate</u>
	Examples	additive gene	effects	of h ² .
Identical	MZ twins			
First degree	FS,DZ,P/O			
Second degree	e HS,aunt/ni	iece		
Third degree	cousins			
Non-genetic	spouses,ir	n-laws		
parent/adoptedchild				

Effect of sample size

- large samples are optimal
- <u>replication of studies</u> is needed, especially when sample sizes are less than optimal

Example general cognitive ability from parent/offspring and siblings adopted-away correlation, r = 0.24 sample size = 203 $h_2 =$ error measurement (standard error) is so large with this sample size that there is a 95% chance r = 0.10-0.38and estimate of $h^2 = 0.20 - 0.76$

```
extend sample size to 2000, h^2 = 0.40 - 0.56
```

Interpreting twin correlations

- r = correlation coefficient
- twins are reared together

Extreme cases:

If $r_{MZ} = r_{DZ} = 0$, this would indicate:

If r_{MZ} = $2r_{DZ}$ = 1, this would indicate

Never found in studies for behavioral traits Measurement error always reduces correlations

Suppose $r_{MZ} > r_{DZ}$

Suppose $r_{MZ} = r_{DZ}$

Any time $r_{MZ} < 1$

- If $r_{DZ} > \frac{1}{2} r_{MZ}$
- If $r_{DZ} = \frac{1}{2} r_{MZ}$
- If $r_{DZ} < \frac{1}{2} r_{MZ}$

Examples of reported twin correlations

Variable	MZ correlation	DZ correlation
BODY MASS INDEX males aged ~20 years (Fabsitz et al.,1992, Int.J.of O	.80 besity)	.42
GENERAL COGNITIVE ABILITY average, many studies (see text page 140) (Bouchard	.86 ,McGue,1981,Science)	.60
EXTERNALIZING BEHAVIOR r PROBLEMS (eg. CD,ODD) fe rated by mother using CBCL, aged 12-16 (Hewitt et al	nales .47 males .56 .1992,Behav.Genet)	.40 .38
DUST ALLERGY females (Duffy et al., 1992, Am.Rev.Resp.Disea	.52 ases)	.21

For disorders:

- concordances instead of correlations
- cannot get estimates of heritability or variance components

MZ concordance > DZ concordance Evidence for genetic effects

Estimating variance components from twin correlations

• when r_{DZ} > or = $\frac{1}{2} r_{MZ}$ ie. NO non-additive gene effects

$$(V_{D} = 0)$$

$$V_A = 2 (r_{MZ} - r_{DZ})$$

 $V_C = 2 r_{DZ} - r_{MZ}$

• when $r_{MZ} > 2 r_{DZ}$ ie. non-additive gene effects are present

$$(V_{\rm C} = 0)$$

$$V_A = 4 r_{DZ} - r_{MZ}$$
$$V_D = 2 r_{MZ} - 4 r_{DZ}$$

- $V_{\rm C}$ and $~V_{\rm D}~$ can co-exist, but they cannot be estimated from twin correlation data if they do

•
$$H_{broad}^2 = V_A + V_D$$
 $h_{narrow}^2 = V_A$

What does an estimate of heritability tell us?

- 1. it applies only to the population studied
- 2. it estimates the proportion of variation in that population that is due to genetic variation
- 3. it can change over time if other influences change
- 4. estimates may be different even for the same trait if environmental variance increases , heritability will decrease if environmental variance decreases, heritability will increase
- 5. changes in environment that we all share may change the population mean but leave the variance unaffected, may still have a big effect on individuals

food, oxygen, technology

- 6. alleles for genes important in normal variation may not be the causes of disorders
- 7. finding a large genetic effect does not equal determinism

SUMMARY - sources of variation

ENVIRONMENTAL EFFECTS

	<u>Name</u>	Symbo	Other names	Estimated by
1. Effects that make	between	C ²	shared e	2DZr – MZr
family members similar	family e		common e	
2.Effects that make	within	e ²	non-shared e	1 – MZr
family members	family e		unique e	
differ				
GENETIC EFFECTS				
1.all alleles for	additive	a²	narrow	MZr
trait produce	genetic		heritability (h ²)	when MZr=2DZr
effect on phenotype				
2.some alleles only	non-additive	d²	dominance	
have effect when	genetic	i ²	epistasis	2MZr – 4DZr
heterozygous or				when MZr>2DZr
with other genes				