Psych 3102 Introduction to Behavior Genetics Lecture 22 Childhood psychopathologies (Developmental psychopathology)

Autistic disorder

- · a mental disorder diagnosed within the first 3 years of life
- a severe neurodevelopmental disorder characterised by:
- 1.
- 2.
- 3.

typically no period of normal development moderate retardation in 75% of cases IQ 35-50

more variable: hyperactivity, under- or over-sensitivity to sensory stimuli, impulsivity, aggression, self-injury

- only small % go on to live independently as adults Commonly used screening tools:

Childhood Autism Rating Scale (CARS) - similar to DSMIV Autism Behavioral Checklist (ABC) – does not exclude other

developmental problems, gives false positive rate of 46%

Prevalence

autistic disorder: 3-6 in 10,000 (0.045%) autism spectrum disorders: 1 in 300 (0.3%)

4:1 boys:girls

500% increase in diagnosed cases 1991-97

- increased awareness, changing diagnostic criteria, not new environmental causes

% phenocopies estimated to be very low

 originally thought to have environmental cause no reported cases of autistic children having autistic parents risk to siblings "only" 3 -10%

Twin and family studies

 all consistent, indicate strong genetic component first degree relative risk = 3 - 10%

Concordances

Concordances		٨		
Relationship	Autistic	Recent	Cognitive/social	
	<u>disorder</u>	studies	deficit .	
MZ twins	36%	70%	92%	
DZ twins	0%	10%	10%	
siblings	3%	10%	15%	
unrelated	0.05%	0.05%	0.3%	
	<u>tetra</u>	tetrachoric correlations		
MZ twins	0.91		0.99	
DZ/sibs	0.44		0.55	

Conclusions

- autism is almost completely genetically determined
- multivariate analysis: different genetic influences exist for the 3 types of symptoms (social, communications, restricted interests) + supported by cognitive and brain data [Happe, Ronald, Plomin, 2006]
- heritability 80 90%
- · no evidence for shared environment
- very small non-shared environment component
- complex, quantitative inheritance –many genes, interactions
- any environmental factors likely work by interacting with susceptible genotypes

Known causes of autism spectrum disorders:

~5% have chromosomal anomaly (duplications of Angelman region, chr 15) ~10% have Mendelian condition (fragile X tuberous sclerosis)

85% have unknown genetic cause (idiopathic autism) -several candidate DNA regions from whole genome scans chromosome 7q

ADHD - attention-deficit hyperactivity disorder

Most predictive characteristics:

1.

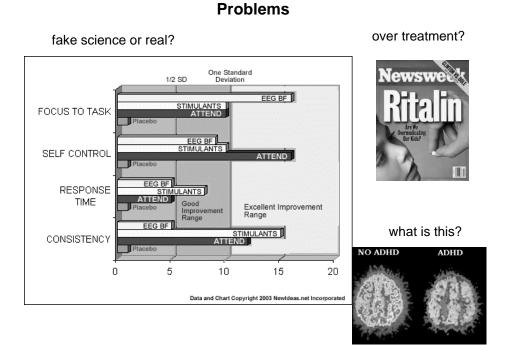
2.

3.

DSMIII-R single category DSMIV 3 categories ADHD I primarily inattentive

ADHD H/I primarily hyperactive/impulsive

ADHD C combined type



Prevalence: 6 - 7% at elementary school age

5:1 boys:girls

- continues into adolescence, 1/3 cases →adulthood
- frequently comorbid with CD, ODD
- increased risk for substance abuse, dependence

Family and adoption studies

Recent large US study:	ADHD combined type
familial tendency:	25% first degree relative risk
	5% prevalence

adoption studies: biological parent/offspring resemblance is much greater than adoptive parent/offspring

Twin studies

 consistent results even with different measurement methods and heterogeniety of phenotype

Concordances 20 twin studies MZ = 51% DZ = 33% Prevalence = 5% heritability ~ 76% no shared e Using quantitative measure:

same sex, 13 year-old twins, hyperactivity ratings:

	Rated by	Mother	Father	Teacher	
MZ twins	-	0.68	0.48	0.62	
DZ twins		-0.08	0.21	0.26	

.

mother's ratings show contrast effects

genetic overlap between inattentive & hyperactive symptoms Conclusions:

- clear genetic influence
- heritability ~70% range = 50 90% depending on measurement
- non-additive gene effects
- little evidence for shared environment

environmental risk factors identified in some studies: parental alcohol dependence, maternal smoking, maternal drinking during pregnancy, very low birth weight

mouse model: knock-out of dopamine transporter gene, chr 9 shows extreme hyperactivity

DRD4, DAT1 + other loci implicated in humans

Adolescent conduct disorder (CD)

- general disregard for rights & property of others
 - destruction of property, theft
 - aggressive behavior fighting, bullying
 - disobedience, lying, deceit, running away from home

Prevalence: 14 -20% boys > girls

CD is one of the most prevalent childhood disorders most common reasons for psychiatric referral

- strongest predictors of adult psychopathology
- alcohol & drug dependence depression anxiety disorders anti-social personality disorder

Latent trait analysis: ADHD/CD – genetic correlation with CD, differences produced by e

Older studies	xt book			
McGuffin (1985) juvenile delinquency				
Twin concordances: MZ = 87%		7% DZ = 72%		
Twin correlations for quantitative measures:				
+ <u>CBCI</u>	<u>by mother</u>	Rutter scale by mother	<u> </u>	
MZ boys	0.47	0.73		
girls	0.56	0.70		
DZ boys	0.40	0.50		
girls	0.38	0.55		
opposite sex	0.49	0.32		

- modest/low genetic influence, heritability higher in girls
- sex differences for Rutter scale ratings
- · large non-shared and shared environment
 - + CBCL Childhood Behavioral Checklist

Problems identified in study methodology:

- sample ascertainment
- age distribution
- method of assessment
- Heterogeneity

Large environmental component - role of family emphasized

- ineffective and/or harsh parenting, poor supervision, lack of discipline, parental conflict, separation, divorce
- all identified as risk factors for CD
- but could these reflect parental psychopathology?

Recent studies

example: Slutske et al (1997) J. Abnormal Psych					
2682 twin pairs community-based sample DSMIII-R					
Australian Twin Registry Male prevalence = 20%					
	Female prevalence = 3%			ence = 3%	
		n	Concordance	Tetrachoric r	
Male	MZ	396	0.53	0.70	
	DZ	231	0.37	0.37	
Female	MZ	930	0.30	0.68	
	DZ	533	0.18	0.48	
Opposit	e sex	592		0.34	
- male proband		0.08			
- female proband		0.45			

- larger genetic influence

- shared environment < 30%

- sex differences in prevalence rates but not influences

Peer influence

- · previously identified as part of environmental influence
- but,

Genes for 'bad behavior'?

• mediation of gene influence is likely to be via personality attributes, cognitive style

Comorbidity with ADHD

CD probands 30-50% also have ADHD ADHD probands 50% show CD/antisocial symptoms latent trait analysis – type of multivariate analysis capable of revealing underlying influences , here = genetic influence DRD4 7-repeat(long) allele associated with ADHD and comorbid CD