Psych 3102 Introduction to Behavior Genetics

Lecture 25 Health psychology - stress and cardiovascular risk - obesity and eating disorders

Health psychology = behavioral medicine

- the role of behavior in promoting health and preventing and treating disease
- new areas of study in behavior genetics:

stress \rightarrow cardiovascular risk

body weight \rightarrow obesity

additive behaviors sr

smoking, alcoholism

Stress and cardiovascular risk

cardiovascular disease leading cause of death in USA, in both males and females

 individual reaction to stress may play a role in risk for cardiovascular disease

large stress reaction associated with increase in cardiovascular disease

- reactions to stress have been shown to have a genetic component:
- 10 twin studies, varied age groups, mix of males and females, mixture of stressors (video games, reaction-time tests, color-word tests, mental math, speech tasks, mirror-drawing)
- stress reaction measured in terms of heart rate and blood pressure changes
- moderate gene influences: heritabilities HR 30-50%

BP 60-70%

- no shared environment

- reactions to stress outside lab much more difficult to measure over long term
 - people chose how and where to live
 - some avoid stress, some seek it out
 - gene influence likely to be present at all levels of choice

Identifying contributing genes

Using methods to locate QTLs - +10 genes involved it blood pressure

One QTL involved in reactivity of blood pressure to stress:

alpha-1-antitrypsin gene - product protects against inflammation - smoking/emphysema risk also

rare single-gene effect: familial hypercholesterolemia

TABLE 2

Frequently Cited Randomized	1 Trials of Behavioral N	ledicine Interventions in	Cardiology

NUMBER OF PATIENTS/TYPE OF DISORDER/REFERENCE	INTERVENTION	LENGTH OF FOLLOW-UP	OUTCOME MEASURE	FINDING	
				TREATMENT	CONTROL
117 patients with mild essential hypertension ⁷⁰	12 sessions, 45 min- utes twice weekly, of breathing-relaxation training and biofeed- back	1 year	Patients whose systolic or diastolic blood pres- sure decreased by >10% from baseline (%)	66%	32%†
48 patients with mixed coronary beart disease ⁷¹	Lifestyle program of diet, exercise, stress management smok-	5 year	Cardiac hospitalizations per patient	0.82	2.21
	ing cessation, and group psychological support		Any cardiac events per patient (MI, PTCA, CABG, cardiac hospital- ization, and death)	0.89	2.3 [†]
585 patients with myocardial infarction ⁷²	Scheduled interaction between case man- agers and patients after discharge: 14 nurses initiated telephone contacts;	6 months after Mi	Smokers who quit 2 months after MI (non- smoking status was blochemically con- firmed) (%)	70%	53%‡
	mailed to patients; and 4 individual nurse sessions of exercise testing, diet-drug therapy for hyperlipidemia, and smoking cessation		Functional capacity mea- sured by stress tests in resting METS (higher score = better)	9.3 METS	8.4 METS†
52 patients with mixed coronary artery disease ⁷³	3 weekly groups of pain management and relaxation train- ing, cognitive refram- ing, and problem	1 month	Weekly chest pain frequency (range 0 to > 5 times/day)	1 less episode/week	0.5 more/week

NUMBER OF PATIENTS/TYPE OF DISORDER/REFERENCE	INTERVENTION	LENGTH OF FOLLOW-UP	ÓUTCÓME Measure	FINDING	
				TREATMENT	CONTROL
Randomized trials					
86 patients with metastatic breast cancer ¹¹	Fifty-two 90-minute group sessions of coping, emotional expression, relaxation training, psychological support	10 years	Mean survival (SD)	36.6 months (37.6)	18.9 months (10.8) [†]
235 patients with Fifty-two 90-minute metastatic breast group sessions of cancer ⁵⁶ emotional expression, coping, psychological support	6 years	Median survival (NS)	17.9 months	17.6 months	
	1 year	Mean TMD score (SD)*	Baseline, 35.8 (39.6)	Baseline, 27.6 (28.2) Change, 9.7	
66 antionte mith male					(24.6)†
oo patients with mela- noma with anxiety and depression ⁵⁴	six su-minute group sessions consisting of health education, problem solving, stress management, psychological support	6 months N	Mean TMD score (SD)*		Baseline, 44.4 (21.89)
					Change, 5.84*
Observational study					
6 patients with mixed cancer diagnoses with anticipatory emesis ⁵⁵	Three to five 30-minute individual hypnosis sessions before chemotherapy	Chemotherapy session	Anticipatory emesis	Change,1.8 (31.7)	38/69 (55%) sessions witi anticipatory emesis [‡]

^{*}Derived from Profile of Mood States. Total Mood Disturbance (TMD) scores range from 0 to 232; higher scores = lower mood. Although there are no norms for the TMD score, the reduction for the treatment group probably represents a clinical reduction in overall distress, with no such improvement noted for the control group. 1P < 0.01. 4P < 0.05.

Eating disorders

· severe disturbances in eating behavior

anorexia nervosa (AN) extreme dieting, avoidance of food, fear of weight gain, extremely low body weight females : highest mortality among psychiatric disorders

 bulimia nervosa (BN) binge eating followed by vomiting / purging, not necessarily accompanied by low weight
 Onset: late adolescence, early adulthood, mostly females
 Prevalence: AN 1 – 2% females 0.1 – 0.2% males

 familial, frequently comorbid with mood and anxiety disorders AN and MDE genetic correlation = 0.58
 34% of genetic variance is common between AN, MDE

First twin study 1991 anorexia Concordances: MZ = 59%DZ = 8%- clear genetic influence heritability ~ 58% $e^2 = 42\%$

First studies on bulimia indicated no gene influence MZ = DZ concordance $\sim 37\%$

Recent studies show bulimia has been diagnosed with very low reliability (kappa = 0.28)

- with more reliable measures, recent family and twin studies indicate stronger genetic influence

- several candidates genes found for both disorders

Body weight and obesity

 animal studies indicate genetic component for tendency towards certain body mass

can selectively breed for fat mass/ muscle mass

Health problems caused by high body weight/obesity

"..obesity is probably the second leading preventable cause of death in the US ." Manson, 1999

High body mass

- increases risk for Type II diabetes, heart disease and cancer

1/3 of cancer deaths are related to diet and inactivity (American Cancer Society)

- contributes more to health-care costs than either smoking or problem drinking
- reaching obesity has same effect on chronic health conditions as aging from 30 to 50

Sturm (2000) financial burden of obesity

Survey of 10,000 households, 1997-98, 18 - 65 year-olds

all effects compared with non-drinking, non-smoking, healthy weight members

obesity:

36% increase in hospital/outpatient spending

77% increase in medication costs

smoking:

21% increase in health services28% increase in medication costs

problem drinking:

10% increase in health services decrease in medication costs

Science 'Special issue' on Obesity Feb, 2003

 identified obesity as ..." the great public health irony of the 21st Century

 hundreds of millions of people across the world lack adequate food and suffer deficiency diseases

- hundreds of millions in other parts of the world overeat to the point of increasing their risk of diet-related chronic diseases

- problems associated with obesity divert scarce resources away from food security in poorer countries to take care of people with preventable heart disease and diabetes
- food is overproduced in richer nations
 USA food supply provides 3800 kcals/person/day
 2 times that required by most adults, given their lifestyles

supplying food is 'big business' in richer nations
 large adjustments to the US economy would have to be made if people ate more healthily

Prevalence of overweight and obesity

Worldwide	+1 billion adults are overweight
	300 million are clinically obese

- UK obesity rate has tripled in 20 years 2/3 of adults are overweight
- USA 20 states have obesity rate of 15 19% 29 states have obesity rate of 20 - 24% 1 state has rate of +25%
- France obesity rate if 8% but rising

Food intake

 based on self-reports, the obese do not eat more than people with healthier weights:

correlation between self-reported food intake and obesity = -0.16

• when food intake is actually measured correlation = 0.56

Twin correlations for food intake: MZ > DZ

- indication of genetic influence
- · several genes influencing appetite have been located

Family, twin and adoption studies on body weight

· indicate genetic influence on body weight

Relationship Correlations for body weight

MZ	0.82	reared apart = 0.72
DZ	0.43	
Siblings	0.34	
Adoptive sibs (non-bio)	0.01	
Parent/offspring	0.26	
Parent/adopted-away offspring	0.23	
AdoptiveParent/offspring	0.00	
Spouses	0.13	

•	very little shared environment	-
	-	

- heritability ~ 70% additive genes
- non-shared environment

similar results for BMI and skin-fold thickness

- most variation for body mass seems to come from genes not the environment
- to maintain a healthy body weight, each person will have to be eating /exercising to different extents depending on their genetic tendencies

Gene influence could act at all possible levels, including interacting with the environment:

BMR - internal, physiological controls
 appetite control - hormonal / brain interaction
 tendency to be active / exercise
 personality - will-power to change, attitudes to what constitutes overweight /obesity
 attitudes to eating

Developmental aspects

longitudinal twin studies:

Correlations at birth: MZ = DZ = 0.6 - 0.7 $h^2 = 0$ at 1 year: MZ = 0.87DZ = 0.58 $h^2 = 60\%$

- birthweight is NOT a good indicator of future weight
- no genetic variation for birthweight indicated
- best predictor of future weight is rapid growth of body fat around age 6
 - earlier spurt is correlated with obesity in adulthood

most genes contribute to continuity – lifestyle changes to maintain healthy weight also have to be continuous

Identifying genes for obesity

- 'obese' gene in mice 1950's
- recessive allele \rightarrow obesity
- gene cloned in 1994
- product identified as leptin
 - a hormone that decreases
 - appetite and increases energy use in mice \rightarrow thin mouse
- · leptin receptor gene active in mouse brain
- same hormone found in humans, gene for leptin chr 2
 - little/no variation for it is found
 - leptin receptor now being studied
- several genes influencing levels of leptin now being investigated
- many other genes found to have influence, replication of studies needed

