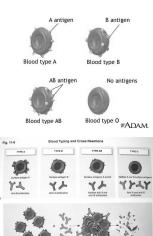
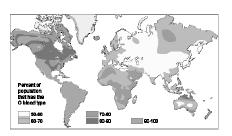
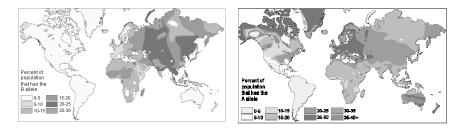
Psych 3102 Lecture 5 Extensions of Mendel - continued

Multiple alleles


 where more than two alleles are present for the trait in the population

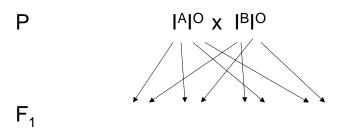
Example: ABO blood group system in humans


antigen


antibody

antigen A + antibody A (clumping of red cells)

Frequencies of blood group alleles vary across populations. Why?



I = blood group locus A,B,O are alleles at that locus

BLOOD Type	GENOTYPE	REACTION WITH ANTI-A SERUM	REACTION WITH ANTI-B SERUM	TYPE OF Donor Blood Accepted
A	I ^A I ^A or I ^A I ^O	Clumping of red blood cells	No clumping	A or O
B	$I^B I^B$ or $I^B I^O$	No clumping	Clumping of red blood cells	B or O
AB	I ^A I ^B	Clumping of red blood cells	Clumping of red blood cells	A, B, AB, or O
0	olol	No clumping	No clumping	0

 I^A and I^B are co-dominant I^O is recessive to both I^A and I^B

Can a group A mother have a group O child with a group B father?

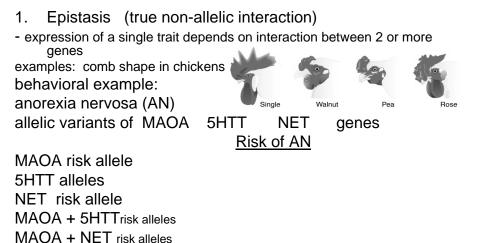
Phenotypes

•

Allelic interactions - between alleles at one locus

- complete dominance

 allele is expressed in the phenotype when present in heterozygous condition
 example:
- recessive
 allele has be present in homozygous condition to show phenotypic
 expression
 example:
- codominance
 both alleles at a locus are expressed in the phenotype example:



 incomplete dominance

 heterozygote shows intermediate phenotype, full effects of 'dominant' allele are not shown examples: chickens horses
 humans

<u>Gene interactions</u> - nonallelic interactions Phenotype is result of complex, integrated pattern of reactions under control of more than one gene and the environment.

2. Pleiotropy

- a single allele has multiple, correlated phenotypic effects

examples:

Maintained in the population by heterozygous advantage

• Sickle cell disease

heterozygote is not as severely affected, but retains resistance to malaria

allele frequency varies across world pleiotropic effects:

point mutation: 6th amino acid in 146 amino acid chain glu val causes red cells to be misshapen

• PKU

point mutation causes non-functional enzyme and inability to metabolize phenylalanine, subsequent brain damage

tyrosine normally produced from phenylalanine

tyrosine used to produce thyroxine epinephrin

melanin

pleiotropic effects of PKU allele :

3. Penetrance

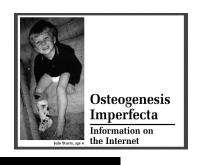
not everyone with a particular genotype shows the expected phenotype

- dominant allele penetrance = frequency with which it expresses itself in the phenotype, as percentage
- 100% penetrance = all individuals with the dominant allele show the expected phenotype
- 50% penetrance = 50% of individuals with the dominant allele display no effect of it in the phenotype (determined by other genes (epistasis) and environment)

Anything less than 100% = low (or incomplete) penetrance

Examples: fragile-X mutation -

Huntington allele -


BRCA-1 - major risk factor allele for breast cancer, age-dependent

penetrance = 37% by age 40	w/out allele = 0.4%
66% by age 55	3%
85 % by age 80	8%

4. Expressivity <u>degree</u> to which penetrant allele expresses itself in phenotype

Examples: osteogenesis imperfecta autosomal dominant

fragile-X syndrome X-linked dominant, 50% penetrance

5. Internal environment

factors that can change expression of genes:

age

Huntington allele Duchenne muscular dystrophy male-pattern baldness

gender

sex-linked traits sex-limited traits

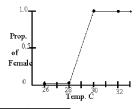
Baldness sex-limited trait 50% male population, small number of women androgenic alopecia = male-pattern baldness, most common cause

2 major genes

androgen receptor on X (X-linked)	x 3.3 risk
transcription factor region on 20p	x 1.6 risk
both risk alleles (14% of men)	x 7 risk
epistasis	

6. External environment genotype x environment

interaction


factors that can change gene expression: temperature coat color in Himalayan rabbits sex-determination in crocodilians

environmental chemicals

phenocopies non-hereditary phenotypic modifications that mimic the effect of genes German measles/hereditary deafness thalidomide/phocomelia Accutane/congenital deformities

effect of diet on PKU effect of smoking/ α -1-antitrypsin gene effect of diet on coat color in mice

Possible mechanism for GxE : Epigenetics

- gene expression is altered
- phenotype is altered, genotype is unchanged

Example of an environmental factor changing gene expression : - coat color in agouti mice

pregnant female mice fed diet with supplements of vit B₁₂, folic acid, & choline had offspring with agouti coats pregnant female mice fed diet without supplements had offspring with yellow coats + offspring had tendency to diabetes, heart disease, obesity

extra nutrients turned down expression of agouti gene, which has pleiotropic effects on appetite and metabolism as well as effecting coat color.