INTRODUCTION TO BEHAVIOR GENETICS

PSYCH 3102

DR HEWITT

PRACTICE EXAM 1

SECTION A

Match the 101	lowing definition	ns to the terms they def	ine:				
1. Any chrom	nosome other than	n the X or Y chromoso	mes				
2. Structure composed of chromatin, found in the nucleus of a cell							
3. An allele that produces a particular phenotype even when present in							
the heterozygous state							
4. The genetic constitution of an individual, or the combination of							
alleles at a pa	rticular locus.						
5. The presen	ce of the same al	llele at a locus on both	members of a				
homologous	pair.						
6. Type of ce	ll division that o	ccurs in germ cells, pro	ducing gametes				
7. "Building l	blocks" of DNA.						
8. Describes t	the situation whe	en a gene has multiple e	effects on				
phenotype							
9. 90% of the	cell cycle is spe	nt in the phase.					
10. The phen	otype of an indiv	ridual with only one X	and no Y chromosome				
Terms							
(the following	g may be used or	nce, more than once, or	not at all)				
allele	amino acid	autosome	centromere				
chromosome	DNA	dominant	Down syndrome				
gamete	genotype	heterozygosity	homozygosity				

18. Explain the term "non-disjunction".

interphase	Klinefelter synd	rome meiosis	mitosis		
non-disjunct	ion	nucleotides	phenotype		
pleiotropy	recessive	RNA	crossing-over		
monosomy	trisomy	Turner syndrome	X-linkage	zygote	
Match the fo	ollowing events t	o the terms below:			
11. When D	NA is replicated				
12. When cr	ossing-over occu	nrs			
13. When pa	airing of homolog	gous chromosomes oc	ecurs		
14. When se	paration of sister	chromatids occurs.			
15. When ge	enes are able to b	e expressed.			
17. Splicing	out of introns				
Terms					
(each term c	an be used once,	more than once, or ne	ot at all)		
mitosis	meiosis I	meiosis II ir	terphase trar	nscription	
translation	replication	RNA processing	polymeri	zation	
-					
_					
SECTION 1	<u>B</u>				
Distinguish 1	between the follo	owing terms			
16. codomin	ance and incomp	plete dominance			
17. phenotyp	pe and genotype				

file://C:\Documents%20and%20Settings\hewittc\Desktop\bg3102\Practice%20exams\Practice%20exam... 1/27/2009

	e
How it arises_	
19. If tl	ne following sequence shows the codons in part of an RNA molecule:
a. sho	w how a nonsense mutation might result in no polypeptide being produced on translation of this part of the sence:
AAA (CAC UUA GAC AAA CUA UAA
lys	his phe asp lys leu stop
	fine the term 'penetrance'. Give an example of an allele that is fully penetrant and an example of an all shows incomplete penetrance.
	nan who is heterozygous for familial hypercholesterolemia (caused by an incompletely dominant marries a normal women and they have children.
a. Wha	is the probability that the first 2 children will have the trait?
	is the probability that the first 3 children will have the trait?
b. Wha	
	is the probability that the first 2 or 3 children will have the trait?