next up previous index
Next: 5 Applications of Matrix Up: 4 Matrix Algebra Previous: 1 Procedure:   Index


4 Equations in Matrix Algebra

Matrix algebra provides a very convenient short hand for writing sets of equations. For example, the pair of simultaneous equations

\begin{eqnarray*}
y_{1}&=&2x_{1} + 3x_{2}\\
y_{2}&=&x_{1} + x_{2}
\end{eqnarray*}



may be written

\begin{eqnarray*}
{\bf y} & = & {\bf Ax}
\end{eqnarray*}



i.e.,

\begin{eqnarray*}
\left( \begin{array}{r} y_{1} \ y_{2} \end{array} \right)
&...
...ht)
\left( \begin{array}{r} x_{1} \ x_{2} \end{array} \right)
\end{eqnarray*}



Also if we have the following pair of equations:

\begin{eqnarray*}
{\bf y} &=& {\bf Ax}\\
{\bf x} &=& {\bf Bz},
\end{eqnarray*}



then

\begin{eqnarray*}
{\bf y} &=& \bf {A(Bz)}\\
&=& \bf {ABz}\\
&=& \bf {Cz}
\end{eqnarray*}



where ${\bf C=AB}$. This is very convenient notation compared with direct substitution. The Mx structural equations are written in this general form, i.e.,
Real variables (y) = Matrix $\times $ hypothetical variables.
To show the simplicity of the matrix notation, consider the following equations:

\begin{eqnarray*}
y_{1}&=&2x_{1} + 3x_{2}\\
y_{2}&=&x_{1} + x_{2}\\
x_{1}&=&z_{1} + z_{2}\\
x_{2}&=&z_{1} - z_{2}
\end{eqnarray*}



Then we have

\begin{eqnarray*}
y_{1}&=&2(z_{1}+z_{2}) + 3(z_{1}-z_{2})\\
&=& 5z_{1}-z_{2}\\
y_{2}&=&(z_{1}+z_{2}) + (z_{1}-z_{2}) \\
&=& 2z_{1} + 0
\end{eqnarray*}



Similarly, in matrix notation, we have ${\bf y=ABz}$, where

\begin{displaymath}{\bf A} = \left( \begin{array}{rr} 2 & 3\ 1 & 1 \end{array} ...
... \left( \begin{array}{rr} 1 & 1 \ 1 & -1 \end{array} \right)
\end{displaymath}

and

\begin{displaymath}{\bf AB} = \left( \begin{array}{rr} 5 & -1\ 2 & 0 \end{array} \right), \;
\end{displaymath}

or

\begin{eqnarray*}
y_{1}&=&5z_{1} - z_{2}\\
y_{2}&=&2z_{2}
\end{eqnarray*}




next up previous index
Next: 5 Applications of Matrix Up: 4 Matrix Algebra Previous: 1 Procedure:   Index
Jeff Lessem 2002-03-21