next up previous index
Next: 4 Equations in Matrix Up: 4 Inverse of a Previous: 4 Inverse of a   Index

1 Procedure:

In order to invert a matrix, the following four steps can be used: ex2html_comment_mark>103 0.bean2
<
Find the determinant
<
Set up the matrix of cofactors
<
Transpose the matrix of cofactors
<
Divide by the determinant
For example, the matrix

\begin{displaymath}
{\bf A} = \left( \begin{array}{rr} 1 & 2\ 1 & 5 \end{array} \right)
\end{displaymath}

can be inverted by: ex2html_comment_mark>104 0.bean3
<

\begin{displaymath}{\bf \vert A\vert} = (1\times 5) - (2\times 1) = 3 \end{displaymath}

<

\begin{eqnarray*}
A_{ij} = \left[ \begin{array}{rr} (-1)^{2}\times 5 & (-1)^{3}...
...=
\left( \begin{array}{rr} 5 & -1\ -2 & 1 \end{array} \right) \end{eqnarray*}



<

\begin{displaymath}
A_{ij}^{\prime}= \left( \begin{array}{rr} 5 & -2\ -1 & 1 \end{array} \right)
\end{displaymath}

<

\begin{displaymath}
{\bf A^{-1}}= \frac{1}{3}\left( \begin{array}{rr} 5 & -2\ ...
...\frac{2}{3} \ -\frac{1}{3} & \frac{1}{3} \end{array} \right)
\end{displaymath}

To verify this, we can multiply AA$^{-1}$ to obtain the identity matrix:

\begin{displaymath}
\frac{1}{3}\left( \begin{array}{rr} 5 & -2\ -1 & 1 \end{ar...
...
= \left(\begin {array}{rr} 1 & 0\ 0 & 1 \end{array} \right)
\end{displaymath}

The result that ${\bf AA}^{-1} = {\bf I}$ may be used to solve the pair of simultaneous equations:

\begin{eqnarray*}
x_{1} + 2x_{2} &=& 8\\
x_{1} + 5x_{2} &=& 17\\
\end{eqnarray*}



which may be written

\begin{displaymath}
\left( \begin{array}{rr} 1 & 2\ 1 & 5 \end{array} \right)
...
...right) =
\left( \begin{array}{r} 8\ 17 \end{array} \right)
\end{displaymath}

i.e.,

\begin{eqnarray*}
{\bf Ax} &=& {\bf y} \\
\end{eqnarray*}



premultiplying both sides by the inverse of $\bf A$, we have

\begin{eqnarray*}
{\bf A}^{-1}{\bf Ax} &=& {\bf A}^{-1}{\bf y} \\
{\bf x} &=&...
...ght) \\
&=& \left( \begin{array}{r} 2\ 3 \end{array} \right)
\end{eqnarray*}



which may be verified by substitution. For a larger matrix it is more tedious to compute the inverse. Let us consider the matrix

\begin{displaymath}{\bf A}= \left( \begin{array}{rrr} 1 & 1 & 0\ 1 & 0 & 1\ 1 &-1 &0
\ \end{array} \right)
\end{displaymath}

ex2html_comment_mark>105 0.bean3
<
The determinant is

\begin{eqnarray*}
{\bf \vert A\vert} &=& +1 \left\vert \begin{array}{rr} 0 & 1\...
...ray}{rr} 1 & 0\ 1 & -1 \end{array} \right\vert
= +1 +1 +0 = 2 \end{eqnarray*}



<
The matrix of cofactors is:

\begin{displaymath}
\begin{array}{llc} A_{ij} =
\left[ \begin{array}{r}+ \ \...
...-1 \ 0 & 0 & 2\ 1 & -1 & -1 \end{array} \right) \end{array}
\end{displaymath}

<
The transpose is

\begin{displaymath}
A_{ij}^{\prime} = \left( \begin{array}{rrr} 1 & 0 & 1\\
1 & 0 & -1\ -1 & 2 & -1\ \end{array} \right)
\end{displaymath}

<
Dividing by the determinant, we have

\begin{displaymath}
{\bf A}^{-1} = \frac{1}{2}
\left( \begin{array}{rrr} 1 & ...
...0 & .5\ .5 & 0 & -.5\ -.5 & 1 & -.5\\
\end{array} \right)
\end{displaymath}

which may be verified by multiplication with A to obtain the identity matrix.

next up previous index
Next: 4 Equations in Matrix Up: 4 Inverse of a Previous: 4 Inverse of a   Index
Jeff Lessem 2002-03-21