next up previous index
Next: 2 Unary operations Up: 6 Exercises Previous: 6 Exercises   Index

1 Binary operations

Let

\begin{displaymath}{\bf A} = \left( \begin{array}{rr} 3 & 6\ 2 & 1 \end{array} ...
...y}{rrrr} 1 & 0 & 3 & 2\ 0 & -1 & -1 & 1 \end{array}
\right)
\end{displaymath}

ex2html_comment_mark>112 0.bean1
<
Form AB.
<
Form BA. (Careful, this might be a trick question!)
Let

\begin{displaymath}{\bf C} = \left( \begin{array}{rr} 3 & 6\ 2 & 1 \end{array} ...
...}= \left( \begin{array}{rr} 1 & 2\ 3 & 4 \end{array} \right)
\end{displaymath}

1.
Form ${\bf CD}$.
2.
Form ${\bf DC}$.
3.
In ordinary algebra, multiplication is commutative, i.e. $xy = yx$. In general, is matrix multiplication commutative?
Let

\begin{displaymath}{\bf E}^{\prime}= \left( \begin{array}{rrr} 1 & 0 & 3\ 1 & 2 & 1
\end{array} \right)
\end{displaymath}

4.
Form ${\bf E(C+D)}$.
5.
Form ${\bf EC + ED}$.
6.
In ordinary algebra, multiplication is distributive over addition, i.e. $x(y+z) = xy + xz$. In general, is matrix multiplication distributive over matrix addition? Is matrix multiplication distributive over matrix subtraction?


Jeff Lessem 2002-03-21